Plasmonic nanostructures can be used to tackle the shortcomings of conventional photosensitizers in photodynamic therapy (PDT) of cancers, including their low reactive oxygen species (ROS) quantum yield, stability, and targetability. However, the positive role of plasmonic nanostructures is not limited to their ability for ROS generation or singlet oxygen formation. The main advantage of plasmonic nanostructures relies on the collective oscillation of free electrons, the so-called surface plasmon resonance (SPR), which can trigger plenty of optical phenomena in their near-field.
View Article and Find Full Text PDFA recyclable optical nanosensor was developed by immobilizing l-tyrosine functionalized silver nanoparticles (AgNPs) on the polyethylene terephthalate (PET) substrate for rapid determination of Pb ions. At first, the l-tyrosine functionalized AgNPs were assessed in the solution phase; the response time was lower than 15 s, and a limit of detection lower than 9 nM was obtained in the dynamic range of 1-1000 nM. For fabrication of the optical assay kit, the design of experiment (DOE) was used to optimize the immobilization efficiency of the nanoparticles on PET films by studying AgNO concentration and pH as two crucial parameters.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
March 2022
L-tryptophan functionalized AgNPs were successfully fabricated using a one-pot synthesis method and assessed as a colorimetric probe for rapid and accurate determination of Mg ions. The developed sensor showed a selective response towards Mg with no interference from Ca in the wide concentration range of 1-200 µM. The sensor's response was optimized in the pH range of 9-10, which can be attributed to the protonation of amine groups and their interaction with Mg ions.
View Article and Find Full Text PDFThis review summarizes the progress that has been made in the use of nanostructured SPR-based chemical sensors and biosensors. Following an introduction into the field, a first large section covers principles of nanomaterial-based SPR sensing, mainly on methods using noble metal nanoparticles (spheres, cubes, triangular plates, etc.).
View Article and Find Full Text PDFUsing organic insecticides including plant oils, it is possible to design a new perspective for the control of insect pests. In this research, nanoemulsion formulations of Mentha piperita, wild-type essential oil (EO) were prepared utilizing high-energy ultrasonication process. Physicochemical properties of nanoemulsions were precisely studied by measurement various parameters including pH, viscosity, conductivity, and zeta potential.
View Article and Find Full Text PDFA rapid and sensitive colorimetric detection method for the determination of Hg has been successfully developed in this research. Citrate-functionalized silver nanotriangles (AgTrngs) were synthesized via one-pot sodium borohydride method with the edge-length range of 30 - 40 nm. The obtained AgTrngs were fully characterized using UV-Vis spectrophotometry, transmission electron microscopy (TEM), energy dispersed spectroscopy (EDS) and X-ray diffractometer.
View Article and Find Full Text PDFIn this work, a new modification was made on the Finke-Watzky mechanism for investigating the nucleation and growth steps in the synthesis of silver nanoparticles (AgNPs). UV-vis spectrophotometry and transmission electron microscopy evaluations proved that the former linear form of Finke-Watzky mechanism is not efficient for describing the nucleation and growth steps of AgNPs synthesis. In this manner, the Finke-Watzky mechanism was modified by considering a reversible pseudo first-order reaction for nucleation step.
View Article and Find Full Text PDFIn this work, a rapid and straightforward method was developed for colorimetric determination of ammonia using smartphones. The mechanisms is based on the manipulation of the surface plasmon band of silver nanoparticles (AgNPs) via the formation of Ag (NH) complex. This complex decreases the amount of AgNPs in the solution and consequently, the color intensity of the colloidal system decreases.
View Article and Find Full Text PDFIn this work, a rapid and simple colorimetric method based on the surface plasmon resonance of silver nanoparticles (AgNPs) was developed for the detection of the drug Timolol. The method used is based on the interaction of Timolol with the surface of the as-synthesized AgNPs, which promotes aggregation of the nanoparticles. This aggregation exploits the surface plasmon resonance through the electric dipole-dipole interaction and coupling among the agglomerated particles, hence bringing forth distinctive changes in the spectra as well as the color of colloidal silver.
View Article and Find Full Text PDF