In this study, we developed a novel surface coating technique to modify the surface chemistry of thin film composite (TFC) nanofiltration (NF) membranes, aiming to mitigate organic fouling while maintaining the membrane's permselectivity. We formed a spot-like polyester (PE) coating on top of a polyamide (PA) TFC membrane using mist-based interfacial polymerization. This process involved exposing the membrane surface to tiny droplets carrying different concentrations of sulfonated kraft lignin (SKL, 3, 5, and 7 wt %) and trimesoyl chloride (TMC, 0.
View Article and Find Full Text PDFMicrobial fuel cells (MFCs) serve two main purposes: clean energy production and wastewater treatment. This study examines the impact of different carbon sources on MFC performance and develops a mathematical model to replicate the polarization curve. The biological reactor employed three types of carbon sources: glucose as a simple feed, microcrystalline cellulose (MCC), and a slurry of the organic component of municipal solid waste (SOMSW) as complex feeds.
View Article and Find Full Text PDFMetal-organic framework (MOF) membranes hold the promise for energy-efficient separation processes. These nanocrystalline compounds can effectively separate materials with different sizes and shapes at a molecular level. Furthermore, MOFs are excellent candidates for improving membrane permeability and/or selectivity due to their unique properties, such as high specific area and special wettability.
View Article and Find Full Text PDFThe new "circular economy" model would revolutionize the economy. It should also be noted that several business models will be needed to optimize their efficiency and overlap as the system evolves over its lifetime. The business model of the circular economy is based on the principle of "value creation" of the conventional economy.
View Article and Find Full Text PDFFouling is one of the most challenging problems impacting the performance of membrane-based separation technology. In recent years, ultrasound have been widely applied as an unconventional method to control membrane fouling, as well as to enhance membrane cleaning. The aim of the present work is to review the current literature and the recent developments related to the use of ultrasound as an innovative and alternative approach to improve the fouling behavior of membrane separation processes.
View Article and Find Full Text PDF