The cellular mechanisms responsible for the regulation of nutrient exchange, immune response, and symbiont population growth in the cnidarian-dinoflagellate symbiosis are poorly resolved. Here, we employed liquid chromatography-mass spectrometry to elucidate proteomic changes associated with symbiosis in , a native symbiont of the sea anemone ('Aiptasia'). We manipulated nutrients available to the algae in culture and to the holobiont (i.
View Article and Find Full Text PDFBidirectional nutrient flow between partners is integral to the cnidarian-dinoflagellate endosymbiosis. However, our current knowledge of the transporter proteins that regulate nutrient and metabolite trafficking is nascent. Four transmembrane transporters that likely play an important role in interpartner nitrogen and carbon exchange were investigated with immunocytochemistry in the model sea anemone ("Aiptasia"; strain NZ1): ammonium transporter 1 (AMT1), V-type proton ATPase (VHA), facilitated glucose transporter member 8 (GLUT8), and aquaporin-3 (AQP3).
View Article and Find Full Text PDFZoantharians of the Persian Gulf (PG) experience periods of anomalous high temperature, irradiance and desiccation. Their survival largely relies on the symbiotic relationship with single celled dinoflagellates of the genus Symbiodinium. However, the phylogeny of symbionts of zoantharians has not been investigated in the region.
View Article and Find Full Text PDF