Publications by authors named "Amirhosein Sanaat"

Purpose: Non-small cell lung cancer is the most common subtype of lung cancer. Patient survival prediction using machine learning (ML) and radiomics analysis proved to provide promising outcomes. However, most studies reported in the literature focused on information extracted from malignant lesions.

View Article and Find Full Text PDF

Purpose: Extracting water equivalent diameter (DW), as a good descriptor of patient size, from the CT localizer before the spiral scan not only minimizes truncation errors due to the limited scan field-of-view but also enables prior size-specific dose estimation as well as scan protocol optimization. This study proposed a unified methodology to measure patient size, shape, and attenuation parameters from a 2D anterior-posterior localizer image using deep learning algorithms without the need for labor-intensive vendor-specific calibration procedures.

Methods: 3D CT chest images and 2D localizers were collected for 4005 patients.

View Article and Find Full Text PDF