InAs nanowires (NWs) have been grown on semi-insulating InAs (111)B substrates by metal-organic chemical vapor deposition catalyzed by 50, 100, and 150 nm-sized Au particles. The pure wurtzite (WZ) phase of these NWs has been attested by high-resolution transmission electron microscopy and selected area diffraction pattern measurements. Low temperature photoluminescence measurements have provided unambiguous and robust evidence of a well resolved, isolated peak at 0.
View Article and Find Full Text PDFObtaining compositional homogeneity without compromising morphological or structural quality is one of the biggest challenges in growing ternary alloy compound semiconductor nanowires. Here we report growth of Au-seeded InxGa1-xAs nanowires via metal-organic vapour phase epitaxy with uniform composition, morphology and pure wurtzite (WZ) crystal phase by carefully optimizing growth temperature and V/III ratio. We find that high growth temperatures allow the InxGa1-xAs composition to be more uniform by suppressing the formation of typically observed spontaneous In-rich shells.
View Article and Find Full Text PDFGrowth of III-V nanowires on the [100]-oriented industry standard substrates is critical for future integrated nanowire device development. Here we present an in-depth analysis of the seemingly complex ensembles of epitaxial nanowires grown on InP (100) substrates. The nanowires are categorized into three types as vertical, nonvertical, and planar, and the growth directions, facets, and crystal structure of each type are investigated.
View Article and Find Full Text PDF