Projects of inertial confinement fusion using lasers need numerous optical components whose coatings allow the increase in their transmission and their resistance to high laser fluence. A coating process based on the self-assembly of sol-gel silica nanoparticles and a post-treatment with ammonia vapor over the surfaces of the optical components ("ammonia curing process") was developed and successfully optimized for industrial production. Manufacturing such antireflective coatings has clear advantages: (i) it is much cheaper than conventional top-down processes; (ii) it is well adapted to large-sized optical components and large-scale production; and (iii) it gives low optical losses in transmission and high resistances to laser fluence.
View Article and Find Full Text PDFWe analyze, using experiments and 3D MHD numerical simulations, the dynamic and radiative properties of a plasma ablated by a laser (1 ns, 10[Formula: see text]-10[Formula: see text] W/cm[Formula: see text]) from a solid target as it expands into a homogeneous, strong magnetic field (up to 30 T) that is transverse to its main expansion axis. We find that as early as 2 ns after the start of the expansion, the plasma becomes constrained by the magnetic field. As the magnetic field strength is increased, more plasma is confined close to the target and is heated by magnetic compression.
View Article and Find Full Text PDFThis publisher's note contains corrections to Opt. Lett.45, 519 (2020) OPLEDP0146-959210.
View Article and Find Full Text PDF