Researchers and biotechnologists require methods to accurately modify the genome of higher eukaryotic cells. Such modifications include, but are not limited to, site-specific mutagenesis, site-specific insertion of foreign DNA, and replacement and deletion of native sequences. Accurate genome modifications in plant species have been rather limited, with only a handful of plant species and genes being modified through the use of early genome-editing techniques.
View Article and Find Full Text PDFGenome editing, i.e. the ability to mutagenize, insert, delete and replace sequences, in living cells is a powerful and highly desirable method that could potentially revolutionize plant basic research and applied biotechnology.
View Article and Find Full Text PDFEndonuclease-mediated induction of genomic double-strand breaks has enabled genome editing in living cells. However, deploying this technology for the induction of gene disruption in plant cells often relies on direct gene transfer of endonuclease (i.e.
View Article and Find Full Text PDFZinc finger nucleases (ZFNs) are a powerful tool for genome editing in eukaryotic cells. ZFNs have been used for targeted mutagenesis in model and crop species. In animal and human cells, transient ZFN expression is often achieved by direct gene transfer into the target cells.
View Article and Find Full Text PDFStudies on the carotenoid-overaccumulating structures in chromoplasts have led to the characterization of proteins termed plastid lipid-associated proteins (PAPs), involved in the sequestration of hydrophobic compounds. Here we characterize the PAP CHRD, which, based on sequence homology, belongs to a highly conserved group of proteins, YER057c/YjgF/UK114, involved in the regulation of basic and vital cellular processes in bacteria, yeast and animals. Two nuclear genes were characterized in tomato plants: one (LeChrDc) is constitutively expressed in various tissues and the other (LeChrDi) is induced by stress in leaves and is upregulated by developmental cues in floral tissues.
View Article and Find Full Text PDF