The high density of polymer brushes confers to these coatings unique physicochemical properties, in particular for the regulation of biomolecular interaction and the design of highly selective coatings for biosensors and protein patterning. Here, we show that high density poly(dimethylaminoethyl methacrylate) cationic polymer brushes enable the stable uptake of high levels of oligonucleotides. This is proposed to result from the high degree of crowding and associated increase in entropic driving force for the binding of polyelectrolytes such as nucleic acid molecules.
View Article and Find Full Text PDFPolymer brush-functionalized nanomaterials offer interesting features for the design of gene delivery vectors as their physicochemical and structural properties can be designed independently of the chemistry, size and shape of the nanomaterial core. However, little is known of the parameters regulating the adsorption and infiltration of DNA molecules at the surface of positively charged polymer brushes, despite the importance of such processes for gene delivery. Here we investigate the role of the molecular environment (e.
View Article and Find Full Text PDFThe actin cytoskeleton is a classic biomechanical mediator of cell migration. While it is known that actin also shuttles in and out of the nucleus, its functions within this compartment remain poorly understood. In this study, we investigated how nuclear actin regulates keratinocyte gene expression and cell behavior.
View Article and Find Full Text PDFBacterial infections resulting from nonsurgical traumatic wounds can be life threatening, especially those caused by multidrug-resistant (MDR) bacteria with limited therapeutic options. The antimicrobial activity of polymyxin B (1) and curcumin (2) alone and in combination was determined versus MDR bacterial isolates associated with traumatic wound infections. Cytotoxicity assays for 1 and 2 were undertaken in keratinocyte cell lines.
View Article and Find Full Text PDFTopical infections can become life threatening in immunocompromised patients. However, fewer treatments are available as multi-drug-resistant bacteria become more common. The natural compounds epigallocatechin gallate (1) and quercetin (2) alone and in combination were tested as potential antimicrobial clinical therapies.
View Article and Find Full Text PDFOrthopedic and dental implants are prone to infection. In this study, we describe a novel system using zinc oxide nanoparticles (nZnO) as a coating material to inhibit bacterial adhesion and promote osteoblast growth. Electrohydrodynamic atomisation (EHDA) was employed to deposit mixtures of nZnO and nanohydroxyapatite (nHA) onto the surface of glass substrates.
View Article and Find Full Text PDFCells sense their mechanical and physical environment through diverse mechanisms, and these interactions specify a wide range of responses including growth, survival, migration and differentiation. Although much work has focused on dissecting the adhesive and structural components of the cell responsible for transducing external mechanical forces into biochemical signalling cascades, only recently have studies begun to examine how mechanical signals are transmitted to the nucleus and activate specific gene expression programmes. One necessary step in these processes is the transport of signalling molecules from the cytoplasm to the nucleus.
View Article and Find Full Text PDF