Publications by authors named "Amir Reza Sharifi"

Article Synopsis
  • - The study addresses the environmental and health risks of organophosphorus pesticides by developing a novel biosensing platform using nanocellulose papers and a specific enzyme for real-time monitoring.
  • - The smart sensor, called nano-PAD, is designed to detect and quantify harmful substances like paraoxon, correlating enzyme activity with pollutant concentration, using advanced printing techniques.
  • - Integrated with a smartphone app and a miniaturized reader, this cost-effective biosensing method is aimed at improving environmental monitoring in settings where traditional tools are not available, ensuring timely and accurate data collection.
View Article and Find Full Text PDF

Even though significant advances have been made, there is still a lack of reliable sensors capable of noninvasively monitoring bilirubin and diagnosing jaundice as the most common neonatal disease, particularly at the point-of-care (POC) where blood sampling from infants is accompanied by serious challenges and concerns. Herein, for the first time, using an easy-to-fabricate/use assay, we demonstrate the capability of curcumin embedded within paper for noninvasive optical monitoring of bilirubin in saliva. The highly selective sensing of the developed sensor toward bilirubin is attributed to bilirubin photoisomerization under blue light exposure, which can selectively restore the bilirubin-induced quenched fluorescence of curcumin.

View Article and Find Full Text PDF

Notwithstanding the substantial progress in optical wearable sensing devices, developing wearable optical sensors for simultaneous, real-time, and continuous monitoring of multiple biomarkers is still an important, yet unmet, demand. Aiming to address this need, we introduced for the first time a smart wearable optical sensor (SWOS) platform combining a multiplexed sweat sensor sticker with its IoT-enabled readout module. We employed our SWOS system for on-body continuous, real-time, and simultaneous fluorimetric monitoring of sweat volume (physical parameter) and pH (chemical marker).

View Article and Find Full Text PDF

The development of novel biomedical sensors as highly promising devices/tools in early diagnosis and therapy monitoring of many diseases and disorders has recently witnessed unprecedented growth; more and faster than ever. Nonetheless, on the eve of Industry 5.0 and by learning from defects of current sensors in smart diagnostics of pandemics, there is still a long way to go to achieve the ideal biomedical sensors capable of meeting the growing needs and expectations for smart biomedical/diagnostic sensing through eHealth systems.

View Article and Find Full Text PDF

Cadmium is a very toxic element found in various aqueous samples. The majority of the highly selective fluorescent ligands, designed for cadmium ion sensing, are hydrophobic compounds, thus making them inactive in aqueous media. Fluorescent imprinted polymers, synthesized by the proficient combination of hydrophilic functional monomers and hydrophobic ligands, may give a new and highly selective opportunity for utilizing most fluorescent ligands for toxic metal ion sensing in aqueous media.

View Article and Find Full Text PDF