Elucidating energetic particle-precursor gas-solid interactions is critical to many atomic and nanoscale synthesis approaches. Focused ion beam sputtering and gas-assisted etching are among the more commonly used direct-write nanomachining techniques that have been developed. Here, we demonstrate a method to simulate gas-assisted focused ion beam (FIB) induced etching for editing/machining materials at the nanoscale.
View Article and Find Full Text PDFA simulation study of focused ion beam (FIB) sputtering in SiO is presented. The basis of this study is an enhanced version of the EnvizION Monte Carlo simulation program for FIB processing, which previously was restricted to targets composed of a single atom. A Monte Carlo method is presented for the simulation of FIB sputtering in SiO in three-dimensions, with ion implantation, to elucidate the complex dynamics of nanoscale milling of compound targets.
View Article and Find Full Text PDFWe present an updated version of our Monte-Carlo based code for the simulation of ion beam sputtering. This code simulates the interaction of energetic ions with a target, and tracks the cumulative damage, enabling it to simulate the dynamic evolution of nanostructures as material is removed. The updated code described in this paper is significantly faster, permitting the inclusion of new features, namely routines to handle interstitial atoms, and to reduce the surface energy as the structure would otherwise develop energetically unfavorable surface porosity.
View Article and Find Full Text PDF