Expert Opin Ther Targets
September 2022
Introduction: The Helping to End Addiction Long-term Initiative supports a wide range of programs to develop new or improved prevention and opioid addiction treatment strategies. An essential component of this effort is to accelerate development of non-opioid pain therapeutics. In all fields of medicine, therapeutics development is an arduous process and late-stage translational efforts such as clinical trials to validate targets are particularly complex and costly.
View Article and Find Full Text PDFMany neurological disorders have complex etiologies that include noninheritable factors, collectively called the neural exposome. The National Institute of Neurological Disorders and Stroke is developing a new office with goals to advance our understanding of the multiple causes of neurological illness and to enable the development of more effective interventions.
View Article and Find Full Text PDFOpioid-related death and overdose have now reached epidemic proportions. In response to this public health crisis, the National Institutes of Health (NIH) launched the Helping to End Addiction Long-term Initiative, or NIH HEAL Initiative, an aggressive, trans-agency effort to speed scientific solutions to stem the national opioid public health crisis. Herein, we describe two NIH HEAL Initiative programs to accelerate development of non-opioid, non-addictive pain treatments: The Preclinical Screening Platform for Pain (PSPP) and Early Phase Pain Investigation Clinical Network (EPPIC-Net).
View Article and Find Full Text PDFOpioid misuse and addiction are a public health crisis resulting in debilitation, deaths, and significant social and economic impact. Curbing this crisis requires collaboration among academic, government, and industrial partners toward the development of effective nonaddictive pain medications, interventions for opioid overdose, and addiction treatments. A 2-day meeting, , was held at the National Institutes of Health (NIH) to address these concerns and to chart a collaborative path forward.
View Article and Find Full Text PDFStructure-activity relationship (SAR) studies are essential in the generation of peptides with enhanced activity and efficacy as therapeutic agents. In this study, we report a Structure-activity relationship study for a family of mimetic peptides derived from type IV collagen with potent anti-angiogenic properties. The Structure-activity relationship study was conducted using a number of validated in vitro assays including cell proliferation, adhesion, migration, and tubule formation.
View Article and Find Full Text PDFTight junctions (TJ) control paracellular permeability and apical-basolateral polarity of epithelial cells. Dysregulated permeability is associated with pathological conditions, such as celiac disease and inflammatory bowel disease. TJ formation is dependent on E-cadherin-mediated cell-cell adhesion and actin rearrangement, and is regulated by the Rho family GTPase and aPKC signaling pathways.
View Article and Find Full Text PDFTight junctions (TJs) control paracellular permeability and apical-basolateral polarity of epithelial cells, and can be regulated by exogenous and endogenous stimuli. Dysregulated permeability is associated with pathological conditions, such as celiac disease and inflammatory bowel disease. Herein we studied the mechanism by which larazotide acetate, an 8-mer peptide and TJ regulator, inhibits the cellular changes elicited by gliadin fragments, AT-1002, and cytokines.
View Article and Find Full Text PDFPeptides have emerged as important therapeutics that are being rigorously tested in angiogenesis-dependent diseases due to their low toxicity and high specificity. Since the discovery of endogenous proteins and protein fragments that inhibit microvessel formation (thrombospondin, endostatin) several peptides have shown promise in pre-clinical and clinical studies for cancer. Peptides have been derived from thrombospondin, collagens, chemokines, coagulation cascade proteins, growth factors, and other classes of proteins and target different receptors.
View Article and Find Full Text PDFTight junctions (TJs) are intercellular structures that control paracellular permeability and epithelial polarity. It is now accepted that TJs are highly dynamic structures that are regulated in response to exogenous and endogenous stimuli. Here, we provide details on the mechanism of action of AT-1002, the active domain of Vibrio cholerae's second toxin, zonula occludens toxin (ZOT).
View Article and Find Full Text PDFBioorg Med Chem Lett
August 2008
AT-1002 a 6-mer synthetic peptide belongs to an emerging novel class of compounds that reversibly increase paracellular transport of molecules across the epithelial barrier. The aim of this project was to elaborate on the structure-activity relationship of this peptide with the specific goal to replace the P2 cysteine amino acid. Herein, we report the discovery of peptides that exhibit reversible permeability enhancement properties with an increased stability profile.
View Article and Find Full Text PDF