Publications by authors named "Amir Orian"

The contribution of deubiquitylating enzymes (DUBs) to β-Catenin stabilization in intestinal stem cells and colorectal cancer (CRC) is poorly understood. Here, and by using an unbiassed screen, we discovered that the DUB USP10 stabilizes β-Catenin specifically in APC-truncated CRC in vitro and in vivo. Mechanistic studies, including in vitro binding together with computational modelling, revealed that USP10 binding to β-Catenin is mediated via the unstructured N-terminus of USP10 and is outcompeted by intact APC, favouring β-catenin degradation.

View Article and Find Full Text PDF

Mutations resulting in decreased activity of p53 tumor suppressor protein promote tumorigenesis. P53 protein levels are tightly regulated through the Ubiquitin Proteasome System (UPS). Several E3 ligases were shown to regulate p53 stability, including MDM2.

View Article and Find Full Text PDF

Molecular understanding of osteogenic differentiation (OD) of human bone marrow-derived mesenchymal stem cells (hBMSCs) is important for regenerative medicine and has direct implications for cancer. We report that the RNF4 ubiquitin ligase is essential for OD of hBMSCs, and that RNF4-deficient hBMSCs remain as stalled progenitors. Remarkably, incubation of RNF4-deficient hBMSCs in conditioned media of differentiating hBMSCs restored OD.

View Article and Find Full Text PDF

A hallmark of cancer is dysregulated protein turnover (proteostasis), which involves pathologic ubiquitin-dependent degradation of tumor suppressor proteins, as well as increased oncoprotein stabilization. The latter is due, in part, to mutation within sequences, termed degrons, which are required for oncoprotein recognition by the substrate-recognition enzyme, E3 ubiquitin ligase. Stabilization may also result from the inactivation of the enzymatic machinery that mediates the degradation of oncoproteins.

View Article and Find Full Text PDF

Lung cancer is the most common cancer worldwide and the leading cause of cancer-related deaths in both men and women. Despite the development of novel therapeutic interventions, the 5-year survival rate for non-small cell lung cancer (NSCLC) patients remains low, demonstrating the necessity for novel treatments. One strategy to improve translational research is the development of surrogate models reflecting somatic mutations identified in lung cancer patients as these impact treatment responses.

View Article and Find Full Text PDF

A hallmark of aging is loss of differentiated cell identity. Aged midgut differentiated enterocytes (ECs) lose their identity, impairing tissue homeostasis. To discover identity regulators, we performed an RNAi screen targeting ubiquitin-related genes in ECs.

View Article and Find Full Text PDF

Regulation of the differentiated identity requires active and continued supervision. Inability to maintain the differentiated state is a hallmark of aging and aging-related disease. To maintain cellular identity, a network of nuclear regulators is devoted to silencing previous and non-relevant gene programs.

View Article and Find Full Text PDF

Among the hallmarks of melanoma are impaired proteostasis and rapid development of resistance to targeted therapy that represent a major clinical challenge. However, the molecular machinery that links these processes is unknown. Here we describe that by stabilizing key melanoma oncoproteins, the ubiquitin ligase RNF4 promotes tumorigenesis and confers resistance to targeted therapy in melanoma cells, xenograft mouse models, and patient samples.

View Article and Find Full Text PDF

The Immune Deficiency (IMD) pathway in Drosophila melanogaster is activated upon microbial challenge with Gram-negative bacteria to trigger the innate immune response. In order to decipher this nuclear factor κB (NF-κB) signaling pathway, we undertook an in vitro RNAi screen targeting E3 ubiquitin ligases specifically and identified the HECT-type E3 ubiquitin ligase Hyperplastic discs (Hyd) as a new actor in the IMD pathway. Hyd mediated Lys63 (K63)-linked polyubiquitination of the NF-κB cofactor Akirin was required for efficient binding of Akirin to the NF-κB transcription factor Relish.

View Article and Find Full Text PDF

The transcription factor ∆Np63 is a master regulator of epithelial cell identity and essential for the survival of squamous cell carcinoma (SCC) of lung, head and neck, oesophagus, cervix and skin. Here, we report that the deubiquitylase USP28 stabilizes ∆Np63 and maintains elevated ∆NP63 levels in SCC by counteracting its proteasome-mediated degradation. Impaired USP28 activity, either genetically or pharmacologically, abrogates the transcriptional identity and suppresses growth and survival of human SCC cells.

View Article and Find Full Text PDF

Regulation of gene expression involves dynamic changes in chromatin organization, where in many cases open chromatin structure correlates with gene activation. Several methods enable monitoring changes in chromatin accessibility, including ATAC-seq, FAIRE-seq, MNase-seq and DNAse-seq methods, which involve Next-generation-sequencing (NGS). Focusing on the adult differentiated gut enterocytes (ECs) we used a sequencing-free method that enables visualizing and semi-quantifying large-scale changes in chromatin structure using methylation assay with the bacterial CpG Methyltransferase, M.

View Article and Find Full Text PDF

The inability of differentiated cells to maintain their identity is a hallmark of age-related diseases. We found that the transcription factor Hey supervises the identity of differentiated enterocytes (ECs) in the adult midgut. Lineage tracing established that Hey-deficient ECs are unable to maintain their unique nuclear organization and identity.

View Article and Find Full Text PDF

Accumulating evidence points to an important role for the gut microbiome in anti-tumor immunity. Here, we show that altered intestinal microbiota contributes to anti-tumor immunity, limiting tumor expansion. Mice lacking the ubiquitin ligase RNF5 exhibit attenuated activation of the unfolded protein response (UPR) components, which coincides with increased expression of inflammasome components, recruitment and activation of dendritic cells and reduced expression of antimicrobial peptides in intestinal epithelial cells.

View Article and Find Full Text PDF

The HECT-type ubiquitin ligase HECT, UBA and WWE Domain Containing 1, (HUWE1) regulates key cancer-related pathways, including the Myc oncogene. It affects cell proliferation, stress and immune signaling, mitochondria homeostasis, and cell death. HUWE1 is evolutionarily conserved from to and Humans.

View Article and Find Full Text PDF

The ubiquitin and SUMO (small ubiquitin-like modifier) pathways modify proteins that in turn regulate diverse cellular processes, embryonic development, and adult tissue physiology. These pathways were originally discovered biochemically in vitro, leading to a long-standing challenge of elucidating both the molecular cross-talk between these pathways and their biological importance. Recent discoveries in established that ubiquitin and SUMO pathways are interconnected via evolutionally conserved SUMO-targeted ubiquitin ligase (STUbL) proteins.

View Article and Find Full Text PDF

The ability of metazoans to combat pathogenic infection involves both systemic and local responses to the invading pathogens. Ubiquitin and SUMO pathways molecularly regulate the response to infection, immune signaling and gene expression. Here, we report that Degringolade (Dgrn, CG10981), a SUMO-targeted ubiquitin ligase connecting the two pathways, is essential for the innate immunity response in Drosophila.

View Article and Find Full Text PDF

Ubiquitylation regulates signaling pathways critical for cancer development and, in many cases, targets proteins for degradation. Here, we report that ubiquitylation by RNF4 stabilizes otherwise short-lived oncogenic transcription factors, including β-catenin, Myc, c-Jun, and the Notch intracellular-domain (N-ICD) protein. RNF4 enhances the transcriptional activity of these factors, as well as Wnt- and Notch-dependent gene expression.

View Article and Find Full Text PDF

SUMOylation is recently found to function as a targeting signal for the degradation of substrates through the ubiquitin-proteasome system. RNF4 is the most studied human SUMO-targeted ubiquitin E3 ligase. However, the relationship between SUMO proteases, SENPs, and RNF4 remains obscure.

View Article and Find Full Text PDF

The E3 ubiquitin ligase and tumor suppressor SCF(Fbw7) exists as three isoforms that govern the degradation of a host of critical cell regulators, including c-Myc, cyclin E, and PGC-1α. Peroxisome proliferator activated receptor-gamma coactivator 1α (PGC-1α) is a transcriptional coactivator with broad effects on cellular energy metabolism. Cellular PGC-1α levels are tightly controlled in a dynamic state by the balance of synthesis and rapid degradation via the ubiquitin-proteasome system.

View Article and Find Full Text PDF

The COP9 signalosome protein complex has a central role in the regulation of development of multicellular organisms. While the function of this complex in ubiquitin-mediated protein degradation is well established, results over the past few years have hinted that the COP9 signalosome may function more broadly in the regulation of gene expression. Here, using DamID technology, we show that COP9 signalosome subunit 7 functionally associates with a large number of genomic loci in the Drosophila genome, and show that the expression of many genes within these loci is COP9 signalosome-dependent.

View Article and Find Full Text PDF

The NF-κB transcription factor controls diverse biological processes. According to the classical model, NF-κB is retained in the cytoplasm of resting cells via binding to inhibitory, IκB proteins and translocates into the nucleus upon their ligand-induced degradation. Here we reveal that Sef, a known tumor suppressor and inhibitor of growth factor signaling, is a spatial regulator of NF-κB.

View Article and Find Full Text PDF

Posttranscriptional modifications of proteins by the ubiquitin and SUMO (Small Ubiquitin-related Modifier) pathways regulate the function of protein networks, enable cells to respond to signaling cues during development, and to cope with the changing environment during adult life. Both modifications can impact protein stability, localization, protein-protein interactions and/or function. While both pathways have been well studied individually, the long-speculated nature of crosstalk between SUMO and ubiquitin pathways has been molecularly enigmatic.

View Article and Find Full Text PDF

Background: Signaling by receptor tyrosine kinase (RTK) pathways plays fundamental roles in processes of cell-fate determination, often through the induction of specific transcriptional responses. Yet it is not fully understood how continuous target gene expression, required for irreversible cell-fate specification, is preserved after RTK signaling has ended. Here we address this question using the Drosophila embryo, a model system that has been instrumental in elucidating the developmental functions of RTK signal transduction.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionlu6tqrv248ija5t4cg2u777ia92g30ph): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once