Publications by authors named "Amir Mohammad Ghadiri"

Article Synopsis
  • Researchers created a new type of 3D structural arrangement using two different types of metal-organic framework (MOF) particles that fit together well based on their sizes, shapes, and charges.
  • They used a special technique called polymeric-attenuated Coulombic self-assembly, which helped them also combine these MOF particles with spherical polystyrene particles to form 2D structures.
  • The findings open up possibilities for using MOFs to design complex superstructures made from particles of diverse sizes, shapes, and material types.
View Article and Find Full Text PDF

Nanotechnology is one of the most impressive sciences in the twenty-first century. Not surprisingly, nanoparticles/nanomaterials have been widely deployed given their multifunctional attributes and ease of preparation via environmentally friendly, cost-effective, and simple methods. Although there are assorted optimized preparative methods for synthesizing the nanoparticles, the main challenge is to find a comprehensive method that has multifaceted properties.

View Article and Find Full Text PDF

The aim of this work was to provide a novel approach to designing and synthesizing a nanocomposite with significant biocompatibility, biodegradability, and stability in biological microenvironments. Hence, the porous ultra-low-density materials, metal-organic frameworks (MOFs), have been considered and the MIL-125(Ti) has been chosen due to its distinctive characteristics such as great biocompatibility and good biodegradability immobilized on the surface of the reduced graphene oxide (rGO). Based on the results, the presence of transition metal complexes next to the drug not only can reinforce the stability of the drug on the structure by preparing π-π interaction between ligands and the drug but also can enhance the efficiency of the drug by preventing the spontaneous release.

View Article and Find Full Text PDF

Overexpression of proteins/antigens and other gene-related sequences in the bodies could lead to significant mutations and refractory diseases. Detection and identification of assorted trace concentrations of such proteins/antigens and/or gene-related sequences remain challenging, affecting different pathogens and making viruses stronger. Correspondingly, coronavirus (SARS-CoV-2) mutations/alterations and spread could lead to overexpression of ssDNA and the related antigens in the population and brisk activity in gene-editing technologies in the treatment/detection may lead to the presence of pCRISPR in the blood.

View Article and Find Full Text PDF

Doxorubicin (DOX) is a potent anti-cancer agent and there have been attempts in developing nanostructures for its delivery to tumor cells. The nanoparticles promote cytotoxicity of DOX against tumor cells and in turn, they reduce adverse impacts on normal cells. The safety profile of nanostructures is an important topic and recently, the green synthesis of nanoparticles has obtained much attention for the preparation of biocompatible carriers.

View Article and Find Full Text PDF

Metal-organic frameworks (MOFs) biocompatible systems can host enzymes/bacteria/viruses. Herein we synthesized a series of fatty acid amide hydrolase (FAAH)-decorated UiO-66-NH based on Citrus tangerine leaf extract for drug delivery and biosensor applications. Five chemically manipulated FAAH-like benzamides were localized on the UiO-66-NH surface with physical interactions.

View Article and Find Full Text PDF

Hybrid bioactive inorganic-organic carbon-based nanocomposites of reduced graphene oxide (rGO) nanosheets enlarged with multi-walled carbon nanotubes (MWCNTs) were decorated to provide a suitable space for growth of CoNiS and green-synthesized ZnO nanoparticles. The ensuing nanocarrier supplied π-π interactions between the DOX drug and a stabilizing agent derived from leaf extracts on the surface of ZnO nanoparticles and hydrogen bonds; gene delivery of (p)CRISPR was also facilitated by chitosan and alginate renewable macromolecules. Also, these polymers can inhibit the potential interactions between the inorganic parts and cellular membranes to reduce the potential cytotoxicity.

View Article and Find Full Text PDF

Unlabelled: There have been numerous advancements in the early diagnosis, detection, and treatment of genetic diseases. In this regard, CRISPR technology is promising to treat some types of genetic issues. In this study, the relationship between calcium (due to its considerable physicochemical properties) and chitosan (as a natural linear polysaccharide) was investigated and optimized for pCRISPR delivery.

View Article and Find Full Text PDF

Green biomaterials play a crucial role in the diagnosis and treatment of diseases as well as health-related problem-solving. Typically, biocompatibility, biodegradability, and mechanical strength are requirements centered on biomaterial engineering. However, in-hospital therapeutics require an elaborated synthesis of hybrid and complex nanomaterials capable of mimicking cellular behavior.

View Article and Find Full Text PDF

Herein, in a one-pot method, the reduced graphene oxide layers with the assistance of multiwalled carbon nanotubes were decorated to provide a suitable space for the in situ growth of CoNiS, and the porphyrins were incorporated into the layers as well to increase the sensitivity of the prepared nanostructure. The prepared nanocomposite can establish π-π interactions between the genetic material and on the surface of porphyrin rings. Also, hydrogen bonds between genetic domains and the porphyrin' nitrogen and the surface hydroxyl groups are probable.

View Article and Find Full Text PDF

Herein, the NH-UiO-66 metal organic framework (MOF) has been green synthesized with the assistance of high gravity to provide a suitable and safe platform for drug loading. The NH-UiO-66 MOF was characterized using a field-emission scanning electron microscope, transmission electron microscope (TEM), X-ray diffraction, and zeta potential analysis. Doxorubicin was then encapsulated physically on the porosity of the green MOF.

View Article and Find Full Text PDF

Evaluation of the effect of different parameters for designing a non-viral vector in gene delivery systems has great importance. In this manner, 2D crystals, precisely layered double hydroxides, have attracted the attention of scientists due to their significant adjustability and low-toxicity and low-cost preparation procedure. In this work, the relationship between different physicochemical properties of LDH, including pH, size, zeta potential, and synthesis procedure, was investigated and optimized for CRISPR/Cas9 delivery and reverse fluorescence response to the EGFP.

View Article and Find Full Text PDF

AgNPs@Chitosan and CoO-NPs@Chitosan were fabricated with Salvia hispanica. Results showed MZI values of 5 and 30 mm for CoO-NPs- and AgNPs@Chitosan against S. aureus, and 15 and 21 mm for CoO-NPs- and AgNPs@Chitosan against E.

View Article and Find Full Text PDF

Here, an unprecedented synthesis method for nickel oxide nanoparticles (NiO-NPs) was facilitated using leaf extracts with the assistance of a high gravity rotating packed bed (RPB) system that enabled fast mass transfer and molecular mixing. The synthesized nanoparticles were anchored on the surface of biodegradable chitosan nanobeads and their photocatalytic activity was evaluated by the degradation of methylene blue. Additionally, the potential biological activities of NiO-NPs in terms of antibacterial ( and for 24 hours), cytotoxicity (using the PC12 cell line for 24 and 72 hours), and antioxidant activities (based on the discoloration of the methanolic solution of DPPH) were assessed.

View Article and Find Full Text PDF

Among different forms of metallic nanoparticles (NPs), zinc oxide (ZnO) NPs with a very special bandgap of 3.37 eV and considerable binding energy of excitation (60 meV at room temperature), have been classified as high-tech nanoparticles. This study aimed to synthesize ZnO NPs using the extract from leaves.

View Article and Find Full Text PDF

This study investigated the synthesis of Pd nanoparticles (NPs) using a high-gravity technique mediated by Salvia hispanica leaf extracts. Biological assays confirmed their antibacterial activity against gram positive (S. aureus) and gram negative (E.

View Article and Find Full Text PDF

Cardiovascular diseases are the number one cause of heart failure and death in the world, and the transplantation of the heart is an effective and viable choice for treatment despite presenting many disadvantages (most notably, transplant heart availability). To overcome this problem, cardiac tissue engineering is considered a promising approach by using implantable artificial blood vessels, injectable gels, and cardiac patches (to name a few) made from biodegradable polymers. Biodegradable polymers are classified into two main categories: natural and synthetic polymers.

View Article and Find Full Text PDF

Introduction: In recent years, the use of cost-effective, multifunctional, environmentally friendly and simple prepared nanomaterials/nanoparticles have been emerged considerably. In this manner, different synthesizing methods were reported and optimized, but there is still lack of a comprehensive method with multifunctional properties.

Materials And Methods: In this study, we aim to synthesis the copper oxide nanoparticles using leaf extracts for the first time.

View Article and Find Full Text PDF

This study, for the first time, reports the synthesis of CuO- and CuO nanoparticles (NPs) using the Salvia hispanica extract by a high-gravity technique. The original green synthesis procedure led to the formation of nanoparticles with promising catalytic and biological properties. The synthesized nanoparticles were fully characterized and their catalytic activity was evaluated through a typical Azide-Alkyne Cycloaddition (AAC) reaction.

View Article and Find Full Text PDF