Many attempts have been made to overcome the challenges of automating textual emotion detection using different traditional deep learning models such as LSTM, GRU, and BiLSTM. But the problem with these models is that they need large datasets, massive computing resources, and a lot of time to train. Also, they are prone to forgetting and cannot perform well when applied to small datasets.
View Article and Find Full Text PDFConsidering the huge volume of opinion texts published on various social networks, it is extremely difficult to peruse and use these texts. The automatic creation of summaries can be a significant help for the users of such texts. The current paper employs manifold learning to mitigate the challenges of the complexity and high dimensionality of opinion texts and the K-Means algorithm for clustering.
View Article and Find Full Text PDFComput Intell Neurosci
July 2021
In recent years, ensemble classification methods have been widely investigated in both industry and literature in the field of machine learning and artificial intelligence. The main advantage of this approach is to benefit from a set of classifiers instead of using a single classifier with the aim of improving the prediction performance, such as accuracy. Selecting the base classifiers and the method for combining them are the most challenging issues in the ensemble classifiers.
View Article and Find Full Text PDF