Background: Correlative interactions between electrical charges and cancer cells involve important unknown factors in cancer diagnosis and treatment. We previously reported the intrinsic suppressive effects of pure positive electrostatic charges (PEC) on the proliferation and metabolism of invasive cancer cells without any effect on normal cells in cell lines and animal models. The proposed mechanism was the suppression of pro-caspases 3 and 9 with an increase in Bax/Bcl2 ratio in exposed malignant cells and perturbation induced in the KRAS pathway of malignant cells by electrostatic charges due to the phosphate molecule electrostatic charge as the trigger of the pathway.
View Article and Find Full Text PDFPure positive electrostatic charges (PPECs) show suppressive effect on the proliferation and metabolism of invasive cancer cells without affecting normal tissues. PPECs are used for the delivery of drug-loaded polymeric nanoparticles (DLNs) capped with negatively charged poly(lactide-co-glycolide) (PLGA) and Poly(vinyl-alcohol) PVA into the tumor site of mouse models. The charged patch is installed on top of the skin in the mouse models' tumor region, and the controlled selective release of the drug is assayed by biochemical, radiological, and histological experiments on both tumorized models and normal rats' livers.
View Article and Find Full Text PDFA gigahertz (GHz) range antenna formed by a coaxial probe has been applied for sensing cancerous breast lesions in the scanning platform with the assistance of a suction tube. The sensor structure was a planar central layer and a metallic sheath of size of 3 cm connected to a network analyzer (keySight FieldFox N9918A) with operational bandwidth up to 26.5 GHz.
View Article and Find Full Text PDFBackground: We discovered that pure positive electrostatic charges (PECs) have an intrinsic suppressive effect on the proliferation and metabolism of invasive cancer cells (cell lines and animal models) without affecting normal tissues.
Methods: We interacted normal and cancer cell lines and animal tumors with PECs by connecting a charged patch to cancer cells and animal tumors. many biochemical, molecular and radiological assays were carried out on PEC treated and control samples.
A new biosensor for detecting cancer involved sentinel lymph nodes has been developed the electrochemical tracing of fatty acid oxidation as a distinct metabolism of malignant cells invading lymph nodes (LNs). The system included integrated platinum needle electrodes that were decorated by carbon nanotubes (as hydrophobic agents) through laser-assisted nanowelding. It was applied to record the dielectric spectroscopy data from LN contents electrochemical impedance spectroscopy.
View Article and Find Full Text PDFThe transport properties of a molecular bio-electronic device based on the alanine amino-acid are investigated. The considered device consists of an alanine molecule as the central potential-dot coupled to two zigzag graphene nanoribbon (ZGNR) conducting electrodes. The current-voltage characteristics of this dual tunnelling molecular junction are studied at two different optimised compositions of the central molecule.
View Article and Find Full Text PDFHerein, we present a new design on the Single Needle Electrochemical Therapy (SNEChT) method by introducing some major improvements, including a nanoporous platinum electrode, tunable in situ anode size that depends on the width and location of the tumor, and the capability of measuring the efficacy of therapy based in intra-therapeutic impedance recording by the same EChT needle. It could have significant implications in optimizing EChT operative conditions. The nanoporous Pt electrode increased the interactive surface with a tumor, and produced a higher amount of current with lower stimulating DC voltage.
View Article and Find Full Text PDFAnalyst
November 2020
Separation of cancerous from normal cells is of broad importance in a large number of cancer diagnosis and treatment methods. One of the most important factors to designate and specify different cells is to study their dielectric and electric cell membrane characteristics. In this research, a label-free cytological slide chip (CSC) is designed and fabricated based on AC electric field stimulation of breast cell lines and blood cells at low frequencies (1 kHz-200 kHz).
View Article and Find Full Text PDFIn this paper, freshly (non-fixed) dissected tissues obtained from breast cancer surgery were impedimetrically and pathologically scanned, analyzed, and probable electro-pathological mutual matching was investigated. A new electrical model was proposed for pathological scores of breast lesions based on the theory of electric current dispersion by different types of biological tissues. This integrated handheld bioimpedance sensor named EPA would score the clearance or malignancy involvement of dissected tumor margins by introducing two crucial classification parameters named Z and IPS (impedance phase slope in the frequency ranges of 100-500 kHz).
View Article and Find Full Text PDF