Learning from examples and adapting to new circumstances are fundamental attributes of human cognition. However, it is unclear what conditions allow for fast and successful learning, especially in nonhuman subjects. To determine how rapidly freely moving mice can learn a new discrimination criterion (DC), we design a two-alternative forced-choice visual discrimination paradigm in which the DCs governing the task can change between sessions.
View Article and Find Full Text PDFHippocampal theta-phase precession is involved in spatiotemporal coding and in generating multineural spike sequences, but how precession originates remains unresolved. To determine whether precession can be generated directly in hippocampal area CA1 and disambiguate multiple competing mechanisms, we used closed-loop optogenetics to impose artificial place fields in pyramidal cells of mice running on a linear track. More than one-third of the CA1 artificial fields exhibited synthetic precession that persisted for a full theta cycle.
View Article and Find Full Text PDFThe precise timing of neuronal spikes may lead to changes in synaptic connectivity and is thought to be crucial for learning and memory. However, the effect of spike timing on neuronal connectivity in the intact brain remains unknown. Using closed-loop optogenetic stimulation in CA1 of freely moving mice, we generated unique spike patterns between presynaptic pyramidal cells (PYRs) and postsynaptic parvalbumin (PV)-immunoreactive cells.
View Article and Find Full Text PDFMultiple biophysical mechanisms may generate non-negative extracellular waveforms during action potentials, but the origin and prevalence of positive spikes and biphasic spikes in the intact brain are unknown. Using extracellular recordings from densely-connected cortical networks in freely-moving mice, we find that a tenth of the waveforms are non-negative. Positive phases of non-negative spikes occur in synchrony or just before wider same-unit negative spikes.
View Article and Find Full Text PDFRecent studies suggest that opioids have a role in the progression of HNSCC mediated by mu opioid receptors (MOR), however, the effects of their activation or blockage remains unclear. Expression of MOR-1 was explored in seven HNSCC cell lines using Western blotting (WB). XTT cell proliferation and cell migration assays were performed on four selected cell lines (Cal-33, FaDu, HSC-2, and HSC-3), treated with opiate receptor agonist (morphine), antagonist (naloxone), alone and combined with cisplatin.
View Article and Find Full Text PDFThe brain propagates neuronal signals accurately and rapidly. Nevertheless, whether and how a pool of cortical neurons transmits an undistorted message to a target remains unclear. We apply optogenetic white noise signals to small assemblies of cortical pyramidal cells (PYRs) in freely moving mice.
View Article and Find Full Text PDFC57BL/6 is the most commonly used mouse strain in neurobehavioral research, serving as a background for multiple transgenic lines. However, C57BL/6 exhibit behavioral and sensorimotor disadvantages that worsen with age. We bred FVB/NJ females and C57BL/6J males to generate first-generation hybrid offspring (FVB/NJ x C57BL/6J)F1.
View Article and Find Full Text PDFResonance is defined as maximal response of a system to periodic inputs in a limited frequency band. Resonance may serve to optimize inter-neuronal communication, and has been observed at multiple levels of neuronal organization. However, it is unknown how neuronal resonance observed at the network level is generated and how network resonance depends on the properties of the network building blocks.
View Article and Find Full Text PDFAccurate detection and quantification of spike transmission between neurons is essential for determining neural network mechanisms that govern cognitive functions. Using point process and conductance-based simulations, we found that existing methods for determining neuronal connectivity from spike times are highly affected by burst spiking activity, resulting in over- or underestimation of spike transmission. To improve performance, we developed a mathematical framework for decomposing the cross-correlation between two spike trains.
View Article and Find Full Text PDFSingle hippocampal cells encode the spatial position of an animal by increasing their firing rates within "place fields," and by shifting the phase of their spikes to earlier phases of the ongoing theta oscillations (theta phase precession). Whether other forms of spatial phase changes exist in the hippocampus is unknown. Here, we used high-density electrophysiological recordings in mice of either sex running back and forth on a 150-cm linear track.
View Article and Find Full Text PDFIEEE Trans Biomed Eng
February 2021
Objective: To assess whether or not pyrimethamine (PMT) can be used to enhance β-hexosaminidase A activity (HexA) in subjects with Late Onset Tay Sachs (LOTS), we studied the effect of incremental doses of PMT in vivo in 9 LOTS patients carrying the αG269S/c.1278insTACT mutations.
Methods: PMT treatment was initiated at a dose of 6.