ACS Appl Mater Interfaces
November 2024
Covalent organic frameworks (COFs) have emerged as a versatile class of materials owing to their well-defined crystalline structures and inherent porosity. In the realm of COFs, their appeal lies in their customizable nature, which can be further enhanced by incorporating diverse functionalities. Postsynthetic modifications (PSMs) emerge as a potent strategy, facilitating the introduction of desired functionalities postsynthesis.
View Article and Find Full Text PDFACS Appl Mater Interfaces
October 2024
Chemotherapy as a common anticancer therapeutic modality is often challenged by various obstacles such as poor stability, low solubility, and severe side effects of chemotherapeutic agents as well as multidrug resistance of cancerous cells. Nanoparticles in the role of carriers for chemotherapeutic drugs and platforms for combining different therapeutic approaches have effectively participated in overcoming such drawbacks. In particular, nanoparticles able to induce their therapeutic effect in response to specific stimuli like tumor microenvironment characteristics (e.
View Article and Find Full Text PDFCore-shell magnetic covalent organic framework (COF) materials were prepared, followed by shell material functionalization with different organic ligands, including thiosemicarbazide, through a postsynthetic modification approach. The structures of the prepared samples were characterized with various techniques, including powder X-ray diffraction (PXRD), Brunauer-Emmett-Teller (BET) method, thermogravimetric analysis (TGA), photoinduced force microscopy (PiFM), transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), and solid C NMR. PXRD and BET studies revealed that the crystalline and porous nature of the functionalized COFs was well maintained after three steps of postsynthetic modification.
View Article and Find Full Text PDFIn this study, a core-shell magnetic metal organic framework (MOF) catalyst was introduced based on FeO magnetic nanoparticles (MNPs) and copper organic frameworks. In this catalyst, FeO MNPs have been coated with MOFs in which copper was the inorganic nodes and 1,3,5-benzenetricarboxylic acid was the organic linkers. Then, the core-shell structures and catalytic efficiency have been confirmed properly and completely with various analyses such as FT-IR, TEM, SEM, TEM mapping, SEM mapping, EDX, PXRD, TGA, ICP and VSM.
View Article and Find Full Text PDFThe design and fabrication of high sensitive and selective biosensing platforms areessential goals to precisely recognize biomaterials in biological assays. In particular, determination of adenosine triphosphate (ATP) as the main energy currency of the cells and one of the most important biomolecules in living organisms is a pressing need in advanced biological detection. Recently, aptamer-based biosensors are introduced as a new direct strategy in which the aptamers (Apts) directly bind to the different targets and detect them on the basis of conformational changes and physical interactions.
View Article and Find Full Text PDFLysozyme (Lyz) is a naturally occurring enzyme that operates against Gram-positive bacteria and leads to cell death. This antimicrobial enzyme forms the part of the innate defense system of nearly all animals and exists in their somatic discharges such as milk, tears, saliva and urine. Increased Lyz level in serum is an important indication of several severe diseases and so, precise diagnosis of Lyz is an urgent need in biosensing assays.
View Article and Find Full Text PDFOne of the most common and important pathogenic bacteria is Staphylococcus aureus (S. aureus) which is known as a foodborne illness all over the world. The detection of micrococcal nuclease (MNase) can act as a unique diagnostic biomarker for the identification of S.
View Article and Find Full Text PDFThe regiochemistry of 1,3-dipolar cycloaddition reactions of E-3-(dimethylamino)-1-(10H-phenothiazin-2-yl) prop-2-en-1-one with some nitrilimines were investigated using density functional theory (DFT) -based reactivity indexes, activation energy calculations and the distortion/interaction model at B3LYP/6-311G(d,p) level of theory. Analysis of the geometries and bond orders (BOs) at the TS structures associated with the different reaction pathways shows that these 1,3-dipolar cycloaddition reactions occur via an asynchronous concerted mechanism.
View Article and Find Full Text PDF