Switched systems are common in artificial control systems. Here, we suggest that the brain adopts a switched feedforward control of grip forces during manipulation of objects. We measured how participants modulated grip force when interacting with soft and rigid virtual objects when stiffness varied continuously between trials.
View Article and Find Full Text PDFTo accurately estimate the state of the body, the nervous system needs to account for delays between signals from different sensory modalities. To investigate how such delays may be represented in the sensorimotor system, we asked human participants to play a virtual pong game in which the movement of the virtual paddle was delayed with respect to their hand movement. We tested the representation of this new mapping between the hand and the delayed paddle by examining transfer of adaptation to blind reaching and blind tracking tasks.
View Article and Find Full Text PDFWhen we knock on a door, we perceive the impact as a collection of simultaneous events, combining sound, sight, and tactile sensation. In reality, information from different modalities but from a single source is flowing inside the brain along different pathways, reaching processing centers at different times. Therefore, interpreting different sensory modalities which seem to occur simultaneously requires information processing that accounts for these different delays.
View Article and Find Full Text PDFUnlabelled: How motion and sensory inputs are combined to assess an object's stiffness is still unknown. Here, we provide evidence for the existence of a stiffness estimator in the human posterior parietal cortex (PPC). We showed previously that delaying force feedback with respect to motion when interacting with an object caused participants to underestimate its stiffness.
View Article and Find Full Text PDFCerebral Palsy (CP) results from an insult to the developing brain and is associated with deficits in locomotor and manual skills and in sensorimotor adaptation. We hypothesized that the poor sensorimotor adaptation in persons with CP is related to their high execution variability and does not reflect a general impairment in adaptation learning. We studied the interaction between performance variability and adaptation deficits using a multi-session locomotor adaptation design in persons with CP.
View Article and Find Full Text PDFThe process of sensorimotor adaptation is considered to be driven by errors. While sensory prediction errors, defined as the difference between the planned and the actual movement of the cursor, drive implicit learning processes, target errors (e.g.
View Article and Find Full Text PDFDuring interaction with objects, we form an internal representation of their mechanical properties. This representation is used for perception and for guiding actions, such as in precision grip, where grip force is modulated with the predicted load forces. In this study, we explored the relationship between grip force adjustment and perception of stiffness during interaction with linear elastic force fields.
View Article and Find Full Text PDFAim: Adolescents and young adults with cerebral palsy (CP) show reduced motor function and gait efficiency, and lower levels of habitual physical activity (HPA), than adolescents with typical development and children with CP. This study examined activity duration and patterns in this population in the Middle East through long-term monitoring of a large sample using accelerometers.
Method: Adolescents and young adults with bilateral CP at Gross Motor Function Classification System (GMFCS) levels II, III, and IV, were monitored in their habitual environment for four consecutive days with ActivPAL3 monitors.
Faster relearning of an external perturbation, savings, offers a behavioral linkage between motor learning and memory. To explain savings effects in reaching adaptation experiments, recent models suggested the existence of multiple learning components, each shows different learning and forgetting properties that may change following initial learning. Nevertheless, the existence of these components in rhythmic movements with other effectors, such as during locomotor adaptation, has not yet been studied.
View Article and Find Full Text PDFIt has been suggested that the brain and in particular the cerebellum and motor cortex adapt to represent the environment during reaching movements under various visuomotor perturbations. It is well known that significant delay is present in neural conductance and processing; however, the possible representation of delay and adaptation to delayed visual feedback has been largely overlooked. Here we investigated the control of reaching movements in human subjects during an imposed visuomotor delay in a virtual reality environment.
View Article and Find Full Text PDFFront Comput Neurosci
March 2013
In intermittent control, instead of continuously calculating the control signal, the controller occasionally changes this signal at certain sparse points in time. The control law may include feedback, adaptation, optimization, or any other control strategies. When, where, and how does the brain employ intermittency as it controls movement? These are open questions in motor neuroscience.
View Article and Find Full Text PDFIt has been suggested that a feedforward control mechanism drives the adaptation of the spatial and temporal interlimb locomotion variables. However, the internal representation of limb kinetics during split-belt locomotion has not yet been studied. In hand movements, it has been suggested that kinetic and kinematic parameters are controlled by separate neural processes; therefore, it is possible that separate neural processes are responsible for kinetic and kinematic locomotion parameters.
View Article and Find Full Text PDFWe perform rhythmic and discrete arm movements on a daily basis, yet the motor control literature is not conclusive regarding the mechanisms controlling these movements; does a single mechanism generate both movement types, or are they controlled by separate mechanisms? A recent study reported partial asymmetric transfer of learning from discrete movements to rhythmic movements. Other studies have shown transfer of learning between large-amplitude to small-amplitude movements. The goal of this study is to explore which aspect is important for learning to be transferred from one type of movement to another: rhythmicity, amplitude or both.
View Article and Find Full Text PDFSeveral studies conducted during the past decade have suggested that episodic memory is better equipped to handle the future than the past. Here, we consider this premise in the context of motor memory. State-of-the-art computational models for trial-by-trial motor adaptation to constant and stochastic force field perturbations in a horizontal reaching paradigm have shown that motor memory registers a weighted sum of past experiences to predict force perturbation in a subsequent trial.
View Article and Find Full Text PDFDaily interaction with the environment consists of moving with or without objects. Increasing interest in both types of movements drove the creation of computational models to describe reaching movements and, later, to describe a simplified version of object manipulation. The previously suggested models for object manipulation rely on the same optimization criteria as models for reaching movements, yet there is no single model accounting for both tasks that does not require reminimization of the criterion for each environment.
View Article and Find Full Text PDFThe ability to adapt is a fundamental and vital characteristic of the motor system. The authors altered the visual environment and focused on the ability of humans to adapt to a rotated environment in a reaching task, in the absence of continuous visual information about their hand location. Subjects could not see their arm but were provided with post trial knowledge of performance depicting hand path from movement onset to final position.
View Article and Find Full Text PDFWe explored how the perception of stiffness can be distorted in Minimally Invasive Surgery. We combined a mechanical simulator with a haptic device, and implemented linear springs at the tip of the simulated laparoscopic device. To explore the influence of mechanical advantage on perception, we set different values of the ratio between internal and external length of the tool.
View Article and Find Full Text PDFIEEE Trans Neural Syst Rehabil Eng
December 2011
To date, research on the motor control of hand function in cerebral palsy has focused on children with hemiplegia, although many persons with diplegic cerebral palsy (dCP) have asymmetrically decreased hand function. We explored the predictive capabilities of the motor system in a simple motor task of lifting a series of virtual objects for five persons with spastic dCP and five age-matched controls. When a person lifts an object, s/he uses an expectation of the weight of the object to generate a motor command.
View Article and Find Full Text PDFComputational motor control covers all applications of quantitative tools for the study of the biological movement control system. This paper provides a review of this field in the form of a list of open questions. After an introduction in which we define computational motor control, we describe: a Turing-like test for motor intelligence; internal models, inverse model, forward model, feedback error learning and distal teacher; time representation, and adaptation to delay; intermittence control strategies; equilibrium hypotheses and threshold control; the spatiotemporal hierarchy of wide sense adaptation, i.
View Article and Find Full Text PDFMonth-space synaesthetes experience months as sequences arranged in spatially defined configurations. While most works on synaesthesia have studied its perceptual implications, this study focuses on the synaesthetic influence on a synaesthete's action behaviour. S.
View Article and Find Full Text PDFA new haptic illusion is described, in which the location of the mobile object affects the perception of its rigidity. There is theoretical and experimental support for the notion that limb position sense results from the brain combining ongoing sensory information with expectations arising from prior experience. How does this probabilistic state information affect one's tactile perception of the environment mechanics? In a simple estimation process, human subjects were asked to report the relative rigidity of two simulated virtual objects.
View Article and Find Full Text PDFIn the Turing test, a computer model is deemed to "think intelligently" if it can generate answers that are not distinguishable from those of a human. However, this test is limited to the linguistic aspects of machine intelligence. A salient function of the brain is the control of movement, and the movement of the human hand is a sophisticated demonstration of this function.
View Article and Find Full Text PDFAdaptation to deterministic force perturbations during reaching movements was extensively studied in the last few decades. Here, we use this methodology to explore the ability of the brain to adapt to a delayed velocity-dependent force field. Two groups of subjects preformed a standard reaching experiment under a velocity dependent force field.
View Article and Find Full Text PDF