Dynamics of a deformable capsule in an oscillatory flow of a Newtonian fluid in a microchannel has been studied numerically. The effects of oscillation frequency, capsule deformability, and channel flow rate have been explored by simulating the capsule within a microchannel. In addition, the simulation captures the effect of the type of imposed pressure oscillations on the migration pattern of the capsule.
View Article and Find Full Text PDFFor patients who are unresponsive to pharmacological treatments of glaucoma, an implantable glaucoma drainage devices (GDD) are often used to manage the intraocular pressure. However, the microscale channel that removes excess aqueous humor from the anterior chamber often gets obstructed due to biofouling, which necessitates additional surgical intervention. Here we demonstrate the proof-of-concept for smart self-clearing GDD by integrating magnetic microactuators inside the drainage tube of GDD.
View Article and Find Full Text PDFIn this paper, we numerically study the dynamics of (1) a Newtonian liquid-filled capsule in a viscoelastic matrix and that of (2) a viscoelastic capsule in a Newtonian matrix in a linear shear flow using a front-tracking method. The numerical results for case (1) indicate that the polymeric fluid reduces the capsule deformation and aligns the deformed capsule with the flow direction. It also narrows the range of tension experienced by the deformed capsule for case (1), while the tank-treading period significantly increases.
View Article and Find Full Text PDFIn this paper, we study the dynamics of deformable cells in a channel flow of Newtonian and polymeric fluids and unravel the effects of deformability, elasticity, inertia, and size on the cell motion. We investigate the role of polymeric fluids on the cell migration behavior and the performance of inertial microfluidic devices. Our results show that the equilibrium position of the cell is on the channel diagonal, in contrast to that of rigid particles, which is on the center of the channel faces for the same range of Reynolds number.
View Article and Find Full Text PDF