The efficient degradation of organic effluent is always desirable when using advanced photocatalysts with enhanced activity under visible light. Nickel-doped indium oxide (Ni-InO) is synthesized via a hydrothermal route as well as its composites with reduced graphene oxide (rGO). Facile synthesis and composite formation methods lead to a well-defined morphology of fabricated nanocomposite at low temperatures.
View Article and Find Full Text PDFBeilstein J Nanotechnol
August 2020
High permittivity and breakdown strength are desired to improve the energy storage density of dielectric materials based on reinforced polymer composites. This article presents the synthesis of polythiophene-encapsulated BaTiO (BTO-PTh) nanoparticles via an in situ Cu(II)-catalyzed chemical oxidative polymerization of thiophene monomer on hydrothermally obtained tetragonal BTO nanocrystals. The formed core-shell-type BTO-PTh nanoparticles exhibit excellent dielectric properties with high permittivity (25.
View Article and Find Full Text PDFPolyvinyl alcohol (PVA)-stabilized graphene nanosheets (GNS) of lateral dimension (L) ~1 μm are obtained via liquid phase exfoliation technique to prepare its composites in the PVA matrix. These composites show low levels of reinforcements due to poor alignment of GNS within the matrix as predicted by the modified Halpin-Tsai model. Drawing these composites up to 200 % strain, a significant improvement in mechanical properties is observed.
View Article and Find Full Text PDFAcanthamoeba is an opportunistic protozoan pathogen that plays a pivotal role in the ecosystem. It may cause blinding keratitis and fatal encephalitis involving the central nervous system. Here we synthesized pure and Zn doped TiO2 nanoparticles (~10-30nm) via sol-gel and sol-hydrothermal methods and demonstrated its impact on the biological characteristics of pathogenic Acanthamoeba castellanii.
View Article and Find Full Text PDFThe purpose of this study was to investigate the chemical composition and particle morphology of white mineral trioxide aggregate (WMTA) and two white Portland cements (CEM 1 and CEM 2). Compositional analysis was performed by energy dispersive X-ray spectroscopy, X-ray fluorescence spectrometry and X-ray diffraction whereas, morphological characteristics were analyzed by scanning electron microscope and Laser scattering particle size distribution analyzer. The elemental composition of WMTA, CEM 1 and CEM 2 were similar except for the presence of higher amounts of bismuth in WMTA.
View Article and Find Full Text PDFTo evaluate the physical and mechanical properties of an experimental bis-GMA-based resin composite incorporated with non-silanized and silanized nano-hydroxyapatite (nHAP) fillers. Experimental bis-GMA based resin composites samples which were reinforced with nHAP fillers were prepared. Filler particles were surface treated with a silane coupling agent.
View Article and Find Full Text PDFApplication of engineered nanoparticles (NPs) with respect to nutrient uptake in plants is not yet well understood. The impacts of TiO2 and Fe3O4 NPs on the availability of naturally soil-bound inorganic phosphorus (Pi) to plants were studied along with relevant parameters. For this purpose, Lactuca sativa (lettuce) was cultivated on the soil amended with TiO2 and Fe3O4 (0, 50, 100, 150, 200, and 250 mg kg(-1)) over a period of 90 days.
View Article and Find Full Text PDFBackground/objectives: Patients with congestive heart failure (CHF) have a high prevalence of cognitive impairment and the association is multifactorial. In general, the burden of anticholinergic drugs has consistently been shown to be a risk factor for cognitive impairment in the elderly. The aim of this study was to assess the cognitive burden of medications in patients with CHF.
View Article and Find Full Text PDFWe have used liquid exfoliation of hexagonal Boron-Nitride (BN) to prepare composites of BN nanosheets of three different sizes in polyvinylchloride matrices. These composites show low levels of reinforcement, consistent with poor alignment of the nanosheets as-described by a modified version of Halpin-Tsai theory. However, drawing of the composites to 300% strain results in a considerable increase in mechanical properties with the maximum composite modulus and strength both ∼×3 higher than that of the pristine polymer.
View Article and Find Full Text PDF