Publications by authors named "Amir H Gandjbakhche"

The emergence of the global coronavirus pandemic in 2019 (COVID-19 disease) created a need for remote methods to detect and continuously monitor patients with infectious respiratory diseases. Many different devices, including thermometers, pulse oximeters, smartwatches, and rings, were proposed to monitor the symptoms of infected individuals at home. However, these consumer-grade devices are typically not capable of automated monitoring during both day and night.

View Article and Find Full Text PDF

Little is known empirically about connectivity and communication between the two hemispheres of the brain in the first year of life, and what theoretical opinion exists appears to be at variance with the meager extant anatomical evidence. To shed initial light on the question of interhemispheric connectivity and communication, this study investigated brain correlates of interhemispheric transmission of information in young human infants. We analyzed EEG data from 12 4-month-olds undergoing a face-related oddball ERP protocol.

View Article and Find Full Text PDF

The worldwide outbreak of the novel Coronavirus (COVID-19) has highlighted the need for a screening and monitoring system for infectious respiratory diseases in the acute and chronic phase. The purpose of this study was to examine the feasibility of using a wearable near-infrared spectroscopy (NIRS) sensor to collect respiratory signals and distinguish between normal and simulated pathological breathing. Twenty-one healthy adults participated in an experiment that examined five separate breathing conditions.

View Article and Find Full Text PDF

The action observation network (AON) is a network of brain regions involved in the execution and observation of a given action. The AON has been investigated in humans using mostly electroencephalogram (EEG) and functional magnetic resonance imaging (fMRI), but shared neural correlates of action observation and action execution are still unclear due to lack of ecologically valid neuroimaging measures. In this study, we used concurrent EEG and functional Near Infrared Spectroscopy (fNIRS) to examine the AON during a live-action observation and execution paradigm.

View Article and Find Full Text PDF

Brain activity in the action observation network (AON) is lateralized during action execution, with greater activation in the contralateral hemisphere to the side of the body used to perform the task. However, it is unknown whether the AON is also lateralized when watching another person perform an action. In this study, we use fNIRS to measure brain activity over the left and right cortex while participants completed actions with their left and right hands and watched an actor complete action with their left and right hands.

View Article and Find Full Text PDF

The purpose of this study was to determine which thermometry technique is the most accurate for regular measurement of body temperature. We compared seven different commercially available thermometers with a gold standard medical-grade thermometer (Welch-Allyn): four digital infrared thermometers (Wellworks, Braun, Withings, MOBI), one digital sublingual thermometer (Braun), one zero heat flux thermometer (3M), and one infrared thermal imaging camera (FLIR One). Thirty young healthy adults participated in an experiment that altered core body temperature.

View Article and Find Full Text PDF

This study aimed to assess transabdominal placental oxygenation levels non-invasively. A wearable device was designed and tested in 12 pregnant women with an anterior placenta, 5 of whom had maternal pregnancy complications. Preliminary results revealed that the placental oxygenation level is closely related to pregnancy complications and placental pathology.

View Article and Find Full Text PDF
Article Synopsis
  • Guest editors Jessica Ramella-Roman and team introduce a special 6-part section focused on advancements in biomedical optics and photonics related to wearable, implantable, mobile, and remote technologies.
  • The articles in this section explore innovative applications and research in these areas, highlighting the potential benefits for healthcare and patient monitoring.
  • Overall, the editors aim to provide insight into how these optical technologies can improve health outcomes and drive future developments in biomedical research.
View Article and Find Full Text PDF

The recent coronavirus disease 2019 (COVID-19) pandemic, which spread across the globe in a very short period of time, revealed that the transmission control of disease is a crucial step to prevent an outbreak and effective screening for viral infectious diseases is necessary. Since the severe acute respiratory syndrome (SARS) outbreak in 2003, infrared thermography (IRT) has been considered a gold standard method for screening febrile individuals at the time of pandemics. The objective of this review is to evaluate the efficacy of IRT for screening infectious diseases with specific applications to COVID-19.

View Article and Find Full Text PDF

Significance: Placenta is an essential organ for fetal development and successful reproduction. Placental insufficiency can lead to fetal hypoxia and, in extreme cases anoxia, leading to fetal death. Of the 145 million deliveries per year worldwide, ∼15 million neonates are small for gestational age and, therefore, at risk for antepartum and intrapartum hypoxia.

View Article and Find Full Text PDF

Ornithine transcarbamylase deficiency (OTCD) is the most common form of urea cycle disorder characterized by the presence of hyperammonemia (HA). In patients with OTCD, HA is known to cause impairments in domains of executive function and working memory. Monitoring OTCD progression and investigating neurocognitive biomarkers can, therefore, become critical in understanding the underlying brain function in a population with OTCD.

View Article and Find Full Text PDF
Article Synopsis
  • The study uses optical imaging technology to assess facial changes in patients with Cushing disease (CD) before and after surgery.*
  • A total of 49 patients underwent surgery, with follow-ups showing a significant decrease in blood volume in the facial area, indicating a response to treatment.*
  • Multi-spectral imaging (MSI) proves effective in evaluating remission from CD and can be a useful tool alongside traditional biochemical tests for monitoring treatment outcomes.*
View Article and Find Full Text PDF

Existing literature outlines the quality and location of activation in the prefrontal cortex (PFC) during working memory (WM) tasks. However, the effects of individual differences on the underlying neural process of WM tasks are still unclear. In this functional near infrared spectroscopy study, we administered a visual and auditory n-back task to examine activation in the PFC while considering the influences of task performance, and preferred learning strategy (VARK score).

View Article and Find Full Text PDF

Background: Assessment of the status of tumor biomarkers in individual patients would facilitate personalizing treatment strategy, and continuous monitoring of those biomarkers and their binding process to the therapeutic drugs would provide a means for early evaluation of the efficacy of therapeutic intervention. Fluorescent probes can accumulate inside the tumor region due to the leakiness of its vascularization and this can make it difficult to distinguish if the measured fluorescence intensity is from probes bound to target receptors or just accumulated unbound probes inside the tumor. In this paper, we have studied the fluorescence lifetime as a means to distinguish bound HER2 specific affibody probes to HER2 receptors.

View Article and Find Full Text PDF

Functional near infrared spectroscopy (fNIRS) is a non-invasive functional neuroimaging modality. Although, it is amenable to use in infants and young children, there is a lack of fNIRS research within the toddler age range. In this study, we used fNIRS to measure cerebral hemodynamics in the prefrontal cortex (PFC) in 18-36 months old toddlers ( = 29) as part of a longitudinal study that enrolled typically-developing toddlers as well as those "at risk" for language and other delays based on presence of early language delays.

View Article and Find Full Text PDF

Background: We have explored the potential prefrontal hemodynamic biomarkers to characterize subjects with Traumatic Brain Injury (TBI) by employing the multivariate machine learning approach and introducing a novel task-related hemodynamic response detection followed by a heuristic search for optimum set of hemodynamic features. To achieve this goal, the hemodynamic response from a group of 31 healthy controls and 30 chronic TBI subjects were recorded as they performed a complexity task.

Methods: To determine the optimum hemodynamic features, we considered 11 features and their combinations in characterizing TBI subjects.

View Article and Find Full Text PDF

Cerebral hemodynamics reflect cognitive processes and underlying physiological processes, both of which are captured by functional near infrared spectroscopy (fNIRS). Here, we introduce a novel parameter of Oxygenation Variability directly obtained from fNIRS data -the OV Index-and we demonstrate its use in children. fNIRS data were collected from 17 children (ages 4-8 years), while they performed a standard Go/No-Go task.

View Article and Find Full Text PDF

Diffuse multi-spectral imaging has been evaluated as a potential non-invasive marker of tumor response. Multi-spectral images of Kaposi sarcoma skin lesions were taken over the course of treatment, and blood volume and oxygenation concentration maps were obtained through principal component analysis (PCA) of the data. These images were compared with clinical and pathological responses determined by conventional means.

View Article and Find Full Text PDF

We describe a compact, non-contact design for a total emission detection (c-TED) system for intra-vital multiphoton imaging. To conform to a standard upright two-photon microscope design, this system uses a parabolic mirror surrounding a standard microscope objective in concert with an optical path that does not interfere with normal microscope operation. The non-contact design of this device allows for maximal light collection without disrupting the physiology of the specimen being examined.

View Article and Find Full Text PDF

HER2 overexpression and amplification of the HER2/neu gene have been found in approximately 25% of invasive breast carcinomas. They are associated with a poor prognosis and resistance to therapy in breast cancer patients. Up to now, clinical evaluation of human epidermal growth factor receptor 2 (HER2) expression is based on ex vivo methods (immunohistochemistry (IHC) or fluorescence in situ hybridization (FISH) staining of biopsied tissue).

View Article and Find Full Text PDF

In vivo optical imaging is being conducted in a variety of medical applications, including optical breast cancer imaging, functional brain imaging, endoscopy, exercise medicine, and monitoring the photodynamic therapy and progress of neoadjuvant chemotherapy. In the past three decades, in vivo diffuse optical breast cancer imaging has shown promising results in cancer detection, and monitoring the progress of neoadjuvant chemotherapy. The use of near infrared spectroscopy for functional brain imaging has been growing rapidly.

View Article and Find Full Text PDF

Modeling behavior of broadband (30 to 1000 MHz) frequency modulated near-infrared (NIR) photons through a phantom is the basis for accurate extraction of optical absorption and scattering parameters of biological turbid media. Photon dynamics in a phantom are predicted using both analytical and numerical simulation and are related to the measured insertion loss (IL) and insertion phase (IP) for a given geometry based on phantom optical parameters. Accuracy of the extracted optical parameters using finite element method (FEM) simulation is compared to baseline analytical calculations from the diffusion equation (DE) for homogenous brain phantoms.

View Article and Find Full Text PDF

Real-time monitoring of the thermal penetration depth (TPD) is essential in various clinical procedures, such as Laser Interstitial Thermal Therapy (LITT). MRI is commonly used to this end, though bulky and expensive. In this paper, we present an alternative novel method for an optical feedback system based on changes in the diffused reflection from the tissue during treatment.

View Article and Find Full Text PDF

In vivo optical imaging is being conducted in a variety of medical applications, including optical breast cancer imaging, functional brain imaging, endoscopy, exercise medicine, and monitoring the photodynamic therapy and progress of neoadjuvant chemotherapy. In the past three decades, in vivo diffuse optical breast cancer imaging has shown promising results in cancer detection, and monitoring the progress of neoadjuvant chemotherapy. The use of near infrared spectroscopy for functional brain imaging has been growing rapidly.

View Article and Find Full Text PDF

Synopsis of recent research by authors named "Amir H Gandjbakhche"

  • - Amir H Gandjbakhche's recent research primarily focuses on developing innovative monitoring techniques for respiratory and neurological health, particularly in the context of infectious diseases like COVID-19, utilizing technologies such as near-infrared spectroscopy (NIRS) and EEG.
  • - His work includes the modification of deep learning models for real-time classification of breathing patterns, as well as the exploration of interhemispheric connectivity in young infants, contributing valuable insights into both respiratory monitoring and early brain development.
  • - Additionally, Gandjbakhche has assessed various non-invasive technologies, such as optical methods for measuring placental oxygenation and the efficacy of infrared thermography for fever screening, signifying a broader application of his research in remote health monitoring and diagnostics.