Individuals with autism spectrum disorder struggle with motor difficulties throughout the life span, and these motor difficulties may affect independent living skills and quality of life. Yet, we know little about how whole-body movement may distinguish individuals with autism spectrum disorder from individuals with typical development. In this study, kinematic and postural sway data were collected during multiple sessions of videogame play in 39 youth with autism spectrum disorder and 23 age-matched youth with typical development (ages 7-17 years).
View Article and Find Full Text PDFGene disruption frequently produces no phenotype in the model plant Arabidopsis thaliana, complicating studies of gene function. Functional redundancy between gene family members is one common explanation but inadequate detection methods could also be responsible. Here, newly developed methods for automated capture and processing of time series of images, followed by computational analysis employing modified linear discriminant analysis (LDA) and wavelet-based differentiation, were employed in a study of mutants lacking the Glutamate Receptor-Like 3.
View Article and Find Full Text PDFThe process of assigning a finite set of tags or labels to a collection of observations, subject to side conditions, is notable for its computational complexity. This labeling paradigm is of theoretical and practical relevance to a wide range of biological applications, including the analysis of data from DNA microarrays, metabolomics experiments, and biomolecular nuclear magnetic resonance (NMR) spectroscopy. We present a novel algorithm, called Probabilistic Interaction Network of Evidence (PINE), that achieves robust, unsupervised probabilistic labeling of data.
View Article and Find Full Text PDFThe Reelin signaling pathway controls radial neuronal migration and maturation in the developing brain. The platelet activating factor (PAF) acetyl hydrolase 1b (Pafah1b) complex is also involved in multiple aspects of brain development. We previously showed that the Reelin pathway and the Pafah1b complex interact genetically and biochemically.
View Article and Find Full Text PDFAnalysis of time series of images can quantify plant growth and development, including the effects of genetic mutations (phenotypes) that give information about gene function. Here is demonstrated a software application named HYPOTrace that automatically extracts growth and shape information from electronic gray-scale images of Arabidopsis (Arabidopsis thaliana) seedlings. Key to the method is the iterative application of adaptive local principal components analysis to extract a set of ordered midline points (medial axis) from images of the seedling hypocotyl.
View Article and Find Full Text PDFReelin, an extracellular protein that signals through the Dab1 adapter protein, and Lis1 regulate neuronal migration and cellular layer formation in the brain. Loss of Reelin and reduction in Lis1 activity in mice or humans results in the disorganization of cortical structures. Lis1, the product of the Pafah1b1 gene associates with Alpha1 (the product of the Pafah1b3 gene) and Alpha2 (the product of the Pafah1b2 gene) to form the Pafah1b heterotrimeric complex.
View Article and Find Full Text PDFReelin is an extracellular protein that directs the organization of cortical structures of the brain through the activation of two receptors, the very low-density lipoprotein receptor (VLDLR) and the apolipoprotein E receptor 2 (ApoER2), and the phosphorylation of Disabled-1 (Dab1). Lis1, the product of the Pafah1b1 gene, is a component of the brain platelet-activating factor acetylhydrolase 1b (Pafah1b) complex, and binds to phosphorylated Dab1 in response to Reelin. Here we investigated the involvement of the whole Pafah1b complex in Reelin signaling and cortical layer formation and found that catalytic subunits of the Pafah1b complex, Pafah1b2 and Pafah1b3, specifically bind to the NPxYL sequence of VLDLR, but not to ApoER2.
View Article and Find Full Text PDFWider use of pain assessment tools that are specifically designed for certain types of pain--such as neuropathic pain--contribute an increasing amount of information which in turn offers the opportunity to employ advanced methods of data analysis. In this manuscript, we present the results of a study where we employed artificial neural networks (ANNs) in an analysis of pain descriptors with the goal of determining how an approach that uses a specific symptoms-based tool would perform with data from the real world of clinical practice. We also used traditional statistics approaches in the form of established scoring systems as well as logistic regression analysis for the purpose of comparison.
View Article and Find Full Text PDFLoss-of-function mutations in RELN (encoding reelin) or PAFAH1B1 (encoding LIS1) cause lissencephaly, a human neuronal migration disorder. In the mouse, homozygous mutations in Reln result in the reeler phenotype, characterized by ataxia and disrupted cortical layers. Pafah1b1(+/-) mice have hippocampal layering defects, whereas homozygous mutants are embryonic lethal.
View Article and Find Full Text PDFPlatelet-activating factor (PAF) has been shown to affect sperm motility and acrosomal function, thereby altering fertility. PAF acetylhydrolase 1b (PAFAH1B) hydrolyzes PAF and is composed of three subunits [the lissencephaly (LIS1) protein and alpha1 and alpha2 subunits] and structurally resembles a GTP-hydrolyzing protein. Besides the brain, transcripts for Lis1, alpha1, and alpha2 are localized to meiotic and early haploid germ cells.
View Article and Find Full Text PDF