Publications by authors named "Amir Ata Saei"

The proteome integral solubility alteration (PISA) assay is widely used for identifying drug targets, but it is labor-intensive and time-consuming and requires a substantial amount of biological sample. Aiming at enabling automation and greatly reducing the sample amount, we developed one-pot time-induced (OPTI)-PISA. Here, we demonstrate OPTI-PISA performance on identifying targets of multiple drugs in cell lysate and scaling down the sample amount to sub-microgram levels, making the PISA method suitable for NanoProteomics.

View Article and Find Full Text PDF

The protein corona formed on nanoparticles (NPs) has potential as a valuable diagnostic tool for improving plasma proteome coverage. Here, we show that spiking small molecules, including metabolites, lipids, vitamins, and nutrients into plasma can induce diverse protein corona patterns on otherwise identical NPs, significantly enhancing the depth of plasma proteome profiling. The protein coronas on polystyrene NPs when exposed to plasma treated with an array of small molecules allows for the detection of 1793 proteins marking an 8.

View Article and Find Full Text PDF

The protein corona, a layer of biomolecules forming around nanoparticles in biological environments, critically influences nanoparticle interactions with biosystems, affecting pharmacokinetics and biological outcomes. Initially, the protein corona presented challenges for nanomedicine and nanotoxicology, such as nutrient depletion in cell cultures and masking of nanoparticle-targeting species. However, recent advancements have highlighted its potential in environmental toxicity, proteomics, and immunology.

View Article and Find Full Text PDF

Here, we present a high-throughput virtual top-down proteomics approach that restores the molecular weight (MW) information in shotgun proteomics and demonstrates its utility in studying proteolytic events in programmed cell death. With gel-assisted proteome position integral shift (GAPPIS), we quantified over 7000 proteins in staurosporine-induced apoptotic HeLa cells and identified 84 proteins exhibiting in a statistically significant manner at least two of the following features: (i) a negative MW shift; (ii) an elevated ratio in a pair of a semitryptic and tryptic peptide, (iii) a negative shift in the standard deviation of MW estimated for different peptides, and (iv) a negative shift in skewness of the same data. Of these proteins, 58 molecules were previously unreported caspase 3 substrates.

View Article and Find Full Text PDF

We recently revealed significant variability in protein corona characterization across various proteomics facilities, indicating that data sets are not comparable between independent studies. This heterogeneity mainly arises from differences in sample preparation protocols, mass spectrometry workflows, and raw data processing. To address this issue, we developed standardized protocols and unified sample preparation workflows, distributing uniform protein corona digests to several top-performing proteomics centers from our previous study.

View Article and Find Full Text PDF

Traditionally, mass spectrometry (MS) output is the ion abundance plotted versus the ionic mass-to-charge ratio /. While employing only commercially available equipment, Charge Determination Analysis (CHARDA) adds a third dimension to MS, estimating for individual peaks their charge states starting from = 1 and color coding in / spectra. CHARDA combines the analysis of ion signal decay rates in the time-domain data (transients) in Fourier transform (FT) MS with the interrogation of mass defects (fractional mass) of biopolymers.

View Article and Find Full Text PDF

The protein corona, a dynamic biomolecular layer that forms on nanoparticle (NP) surfaces upon exposure to biological fluids is emerging as a valuable diagnostic tool for improving plasma proteome coverage analyzed by liquid chromatography-mass spectrometry (LC-MS/MS). Here, we show that spiking small molecules, including metabolites, lipids, vitamins, and nutrients (namely, glucose, triglyceride, diglycerol, phosphatidylcholine, phosphatidylethanolamine, L-α-phosphatidylinositol, inosine 5'-monophosphate, and B complex), into plasma can induce diverse protein corona patterns on otherwise identical NPs, significantly enhancing the depth of plasma proteome profiling. The protein coronas on polystyrene NPs when exposed to plasma treated with an array of small molecules (n=10) allowed for detection of 1793 proteins marking an 8.

View Article and Find Full Text PDF

Rapamycin is a natural antifungal, immunosuppressive, and antiproliferative compound that allosterically inhibits mTOR complex 1. The ubiquitin-proteasome system (UPS) responsible for protein turnover is usually not listed among the pathways affected by mTOR signaling. However, some previous studies have indicated the interplay between the UPS and mTOR.

View Article and Find Full Text PDF

Protein corona, a layer of biomolecules primarily comprising proteins, forms dynamically on nanoparticles in biological fluids and is crucial for predicting nanomedicine safety and efficacy. The protein composition of the corona layer is typically analyzed using liquid chromatography-mass spectrometry (LC-MS/MS). Our recent study, involving identical samples analyzed by 17 proteomics facilities, highlighted significant data variability, with only 1.

View Article and Find Full Text PDF

We investigated the immediate molecular consequences of traumatic brain injuries (TBIs) using a novel proteomics approach. We simulated TBIs using an innovative laboratory apparatus that employed a 5.1 kg dummy head that held neuronal cells and generated a ≤4000 g-force acceleration upon impact.

View Article and Find Full Text PDF

Low capacity to produce ROS because of mutations in neutrophil cytosolic factor 1 (NCF1/p47phox), a component of NADPH oxidase 2 (NOX2) complex, is strongly associated with systemic lupus erythematosus in both humans and mouse models. Here, we aimed to identify the key immune cell type(s) and cellular mechanisms driving lupus pathogenesis under the condition of NCF1-dependent ROS deficiency. Using cell-specific Cre-deleter, human NCF1-339 variant knockin, and transgenic mouse strains, we show that low ROS production in plasmacytoid dendritic cells (pDCs) exacerbated both pristane-induced lupus and a potentially new Y-linked autoimmune accelerating locus-related spontaneous model by promoting pDC accumulation in multiple organs during lupus development, accompanied by elevated IFN-α levels and expression of IFN-stimulated genes.

View Article and Find Full Text PDF

As various nanoparticles (NPs) are increasingly being used in nanomedicine products for more effective and less toxic therapy and diagnosis of diseases, there is a growing need to understand their biological fate in different sexes. Herein, we report a proof-of-concept result of sex-specific protein corona compositions on the surface of silica NPs as a function of their size and porosity upon incubation with plasma proteins of female and male BALB/c mice. Our results demonstrate substantial differences between male and female protein corona profiles on the surface of silica nanoparticles.

View Article and Find Full Text PDF

We recently discovered that superparamagnetic iron oxide nanoparticles (SPIONs) can levitate plasma biomolecules in the magnetic levitation (MagLev) system and cause formation of ellipsoidal biomolecular bands. To better understand the composition of the levitated biomolecules in various bands, we comprehensively characterized them by multi-omics analyses. To probe whether the biomolecular composition of the levitated ellipsoidal bands correlates with the health of plasma donors, we used plasma from individuals who had various types of multiple sclerosis (MS), as a model disease with significant clinical importance.

View Article and Find Full Text PDF

Robust characterization of the protein corona-the layer of proteins that spontaneously forms on the surface of nanoparticles immersed in biological fluids-is vital for prediction of the safety, biodistribution, and diagnostic/therapeutic efficacy of nanomedicines. Protein corona identity and abundance characterization is entirely dependent on liquid chromatography coupled to mass spectroscopy (LC-MS/MS), though the variability of this technique for the purpose of protein corona characterization remains poorly understood. Here we investigate the variability of LC-MS/MS workflows in analysis of identical aliquots of protein coronas by sending them to different proteomics core-facilities and analyzing the retrieved datasets.

View Article and Find Full Text PDF

Measuring the relative abundances of heavy stable isotopes of the elements C, H, N, and O in proteins is of interest in environmental science, archeology, zoology, medicine, and other fields. The isotopic abundance measurements of the fine structure of immonium ions with ultrahigh resolution mass spectrometry obtained in gas-phase fragmentation of polypeptides have previously uncovered anomalous deuterium enrichment in (hydroxy)proline of bone collagen in marine mammals. Here, we provide a detailed description and validation of this approach and demonstrate per mil-range precision of isotopic ratio measurements in aliphatic residues from proteins and cell lysates.

View Article and Find Full Text PDF

Ammonia loss from -asparaginyls is a nonenzymatic reaction spontaneously occurring in all proteins and eventually resulting in damaging isoaspartate residues that hamper protein function and induce proteinopathy related to aging. Here, we discuss theoretical considerations supporting the possibility of a full repair reaction and present the first experimental evidence of its existence. If confirmed, the true repair of -asparaginyl deamidation could open new avenues for preventing aging and neurodegenerative diseases.

View Article and Find Full Text PDF

Albumin-based hydrogels offer unique benefits such as biodegradability and high binding affinity to various biomolecules, which make them suitable candidates for biomedical applications. Here, we report a non-immunogenic photocurable human serum-based (HSA) hydrogel synthesized by methacryloylation of human serum albumin by methacrylic anhydride (MAA). We used matrix-assisted laser desorption ionization-time-of-flight mass spectrometry, liquid chromatography-tandem mass spectrometry, as well as size exclusion chromatography to evaluate the extent of modification, hydrolytic and enzymatic degradation of methacrylated albumin macromer and its cross-linked hydrogels.

View Article and Find Full Text PDF

Analyzing the δH values in individual amino acids of proteins extracted from vertebrates, we unexpectedly found in some samples, notably bone collagen from seals, more than twice as much deuterium in proline and hydroxyproline residues than in seawater. This corresponds to at least 4 times higher δH than in any previously reported biogenic sample. We ruled out diet as a plausible mechanism for such anomalous enrichment.

View Article and Find Full Text PDF

The emergence of nanotechnology has created unprecedented hopes for addressing several unmet industrial and clinical issues, including the growing threat so-termed "antibiotic resistance" in medicine. Over the last decade, nanotechnologies have demonstrated promising applications in the identification, discrimination, and removal of a wide range of pathogens. Here, recent insights into the field of bacterial nanotechnology are examined that can substantially improve the fundamental understanding of nanoparticle and bacteria interactions.

View Article and Find Full Text PDF

Introduction: Lupus nephritis (LN) is one of the most serious complications of systemic lupus erythematous (SLE). With no specific clinical or laboratory manifestation to predict response to treatment, this study was aimed to provide a panel of predictive biomarkers of response before initiation of treatment.

Methods: Liquid chromatography tandem mass spectrometry (LC-MS/MS) analysis was performed on plasma and urine samples of 11 patients with biopsy proven proliferative LN at the time of biopsy.

View Article and Find Full Text PDF

Ferumoxytol nanoparticles are being used clinically for the treatment of anemia and molecular imaging in patients. It is well documented that while most patients tolerate ferumoxytol well, a small percentage of patients (i.e.

View Article and Find Full Text PDF

Metabolomics research is rapidly gaining momentum in disease diagnosis, on top of other Omics technologies. Breathomics, as a branch of metabolomics is developing in various frontiers, for early and noninvasive monitoring of disease. This review starts with a brief introduction to metabolomics and breathomics.

View Article and Find Full Text PDF

Despite the immense importance of enzyme-substrate reactions, there is a lack of general and unbiased tools for identifying and prioritizing substrate proteins that are modified by the enzyme on the structural level. Here we describe a high-throughput unbiased proteomics method called System-wide Identification and prioritization of Enzyme Substrates by Thermal Analysis (SIESTA). The approach assumes that the enzymatic post-translational modification of substrate proteins is likely to change their thermal stability.

View Article and Find Full Text PDF

Further complications associated with infection by severe acute respiratory syndrome coronavirus 2 (a.k.a.

View Article and Find Full Text PDF