Publications by authors named "Amir Asiaee"

Transcription factors (TFs) and microRNAs (miRNAs) are fundamental regulators of gene expression, cell state, and biological processes. This study investigated whether a small subset of TFs and miRNAs could accurately predict genome-wide gene expression. We analyzed 8895 samples across 31 cancer types from The Cancer Genome Atlas and identified 28 miRNA and 28 TF clusters using unsupervised learning.

View Article and Find Full Text PDF

Cancer progression, including the development of intratumor heterogeneity, is inherently a spatial process. Mathematical models of tumor evolution may be a useful starting point for understanding the patterns of heterogeneity that can emerge in the presence of spatial growth. A commonly studied spatial growth model assumes that tumor cells occupy sites on a lattice and replicate into neighboring sites.

View Article and Find Full Text PDF

The transcriptome of a tumor contains detailed information about the disease. Although advances in sequencing technologies have generated larger data sets, there are still many questions about exactly how the transcriptome is regulated. One class of regulatory elements consists of microRNAs (or miRs), many of which are known to be associated with cancer.

View Article and Find Full Text PDF

We describe a recent framework for statistical shape analysis of curves and show its applicability to various biological datasets. The presented methods are based on a functional representation of shape called the square-root velocity function and a closely related elastic metric. The main benefit of this approach is its invariance to reparameterization (in addition to the standard shape-preserving transformations of translation, rotation and scale), and ability to compute optimal registrations (point correspondences) across objects.

View Article and Find Full Text PDF

Background: Large quantities of biomedical data are being produced at a rapid pace for a variety of organisms. With ontologies proliferating, data is increasingly being stored using the RDF data model and queried using RDF based querying languages. While existing systems facilitate the querying in various ways, the scientist must map the question in his or her mind to the interface used by the systems.

View Article and Find Full Text PDF

Background: Research on the biology of parasites requires a sophisticated and integrated computational platform to query and analyze large volumes of data, representing both unpublished (internal) and public (external) data sources. Effective analysis of an integrated data resource using knowledge discovery tools would significantly aid biologists in conducting their research, for example, through identifying various intervention targets in parasites and in deciding the future direction of ongoing as well as planned projects. A key challenge in achieving this objective is the heterogeneity between the internal lab data, usually stored as flat files, Excel spreadsheets or custom-built databases, and the external databases.

View Article and Find Full Text PDF