Background: The brown dog tick is globally distributed and harms the host in terms of blood feeding and pathogen transfer. Chemicals are traditionally used for the control, but herbal plants have been investigated mainly due to their natural components with killing and repellant effects. Previously, the role of thymol has been described for the biocontrol of ticks at different stages.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Current limitations in implant design often lead to trade-offs between minimally invasive surgery and achieving the desired post-implantation functionality. Here, we present an artificial intelligence inverse design paradigm for creating deployable implants as planar and tubular thermal mechanical metamaterials (thermo-metamaterials). These thermo-metamaterial implants exhibit tunable mechanical properties and volume change in response to temperature changes, enabling minimally invasive and personalized surgery.
View Article and Find Full Text PDFAuxetic materials have been extensively studied for their design, fabrication and mechanical properties. These material systems exhibit unique mechanical characteristics such as high impact resistance, shear strength, and energy absorption capacity. Most existing auxetic materials are two-dimensional (2D) and demonstrate half-auxetic behavior, characterized by a negative Poisson's ratio when subjected to either tensile or compressive forces.
View Article and Find Full Text PDFThere is a significant unmet need for clinical reflex tests that increase the specificity of prostate-specific antigen blood testing, the longstanding but imperfect tool for prostate cancer diagnosis. Towards this endpoint, we present the results from a discovery study that identifies new prostate-specific antigen reflex markers in a large-scale patient serum cohort using differentiating technologies for deep proteomic interrogation. We detect known prostate cancer blood markers as well as novel candidates.
View Article and Find Full Text PDFThe electrical conductivity of blood is a crucial physiological parameter with diverse applications in medical diagnostics. Here, a novel approach utilizing a portable millifluidic nanogenerator lab-on-a-chip device for measuring blood conductivity at low frequencies, is introduced. The proposed device employs blood as a conductive substance within its built-in triboelectric nanogenerator system.
View Article and Find Full Text PDFAlzheimer's disease (AD) and related dementias (ADRD) is a complex disease with multiple pathophysiological drivers that determine clinical symptomology and disease progression. These diseases develop insidiously over time, through many pathways and disease mechanisms and continue to have a huge societal impact for affected individuals and their families. While emerging blood-based biomarkers, such as plasma p-tau181 and p-tau217, accurately detect Alzheimer neuropthology and are associated with faster cognitive decline, the full extension of plasma proteomic changes in ADRD remains unknown.
View Article and Find Full Text PDFImplantation of the human embryo begins a critical developmental stage that comprises profound events including axis formation, gastrulation and the emergence of haematopoietic system. Our mechanistic knowledge of this window of human life remains limited due to restricted access to in vivo samples for both technical and ethical reasons. Stem cell models of human embryo have emerged to help unlock the mysteries of this stage.
View Article and Find Full Text PDFTriboelectric nanogenerators offer an environmentally friendly approach to harvesting energy from mechanical excitations. This capability has made them widely sought-after as an efficient, renewable, and sustainable energy source, with the potential to decrease reliance on traditional fossil fuels. However, developing triboelectric nanogenerators with specific output remains a challenge mainly due to the uncertainties associated with their complex designs for real-life applications.
View Article and Find Full Text PDFMechanical metamaterials enable the creation of structural materials with unprecedented mechanical properties. However, thus far, research on mechanical metamaterials has focused on passive mechanical metamaterials and the tunability of their mechanical properties. Deep integration of multifunctionality, sensing, electrical actuation, information processing, and advancing data-driven designs are grand challenges in the mechanical metamaterials community that could lead to truly intelligent mechanical metamaterials.
View Article and Find Full Text PDFImplantation of the human embryo commences a critical developmental stage that comprises profound morphogenetic alteration of embryonic and extra-embryonic tissues, axis formation, and gastrulation events. Our mechanistic knowledge of this window of human life remains limited due to restricted access to samples for both technical and ethical reasons. Additionally, human stem cell models of early post-implantation development with both embryonic and extra-embryonic tissue morphogenesis are lacking.
View Article and Find Full Text PDFCreating multifunctional concrete materials with advanced functionalities and mechanical tunability is a critical step toward reimagining the traditional civil infrastructure systems. Here, the concept of nanogenerator-integrated mechanical metamaterial concrete is presented to design lightweight and mechanically tunable concrete systems with energy harvesting and sensing functionalities. The proposed metamaterial concrete systems are created via integrating the mechanical metamaterial and nano-energy-harvesting paradigms.
View Article and Find Full Text PDFMarkers are increasingly being used for several high-throughput data analysis and experimental design tasks. Examples include the use of markers for assigning cell types in scRNA-seq studies, for deconvolving bulk gene expression data, and for selecting marker proteins in single-cell spatial proteomics studies. Most marker selection methods focus on differential expression (DE) analysis.
View Article and Find Full Text PDFIntroducing engineered nanoparticles (NPs) into a biofluid such as blood plasma leads to the formation of a selective and reproducible protein corona at the particle-protein interface, driven by the relationship between protein-NP affinity and protein abundance. This enables scalable systems that leverage protein-nano interactions to overcome current limitations of deep plasma proteomics in large cohorts. Here the importance of the protein to NP-surface ratio (P/NP) is demonstrated and protein corona formation dynamics are modeled, which determine the competition between proteins for binding.
View Article and Find Full Text PDFSingle-cell technologies are revolutionizing the ability of researchers to infer the causes and results of biological processes. Although several studies of pluripotent cell differentiation have recently utilized single-cell sequencing data, other aspects related to the optimization of differentiation protocols, their validation, robustness, and usage are still not taking full advantage of single-cell technologies. In this review, we focus on computational approaches for the analysis of single-cell omics and imaging data and discuss their use to address many of the major challenges involved in the development, validation, and use of cells obtained from pluripotent cell differentiation.
View Article and Find Full Text PDFTriboelectric nanogenerators have received significant research attention in recent years. Structural design plays a critical role in improving the energy harvesting performance of triboelectric nanogenerators. Here, we develop the magnetic capsulate triboelectric nanogenerators (MC-TENG) for energy harvesting under undesirable mechanical excitations.
View Article and Find Full Text PDFThere is a critical shortage in research needed to explore a new class of multifunctional structural components that respond to their environment, empower themselves and self-monitor their condition. Here, we propose the novel concept of triboelectric nanogenerator-enabled structural elements (TENG-SEs) to build the foundation for the next generation civil infrastructure systems with intrinsic sensing and energy harvesting functionalities. In order to validate the proposed concept, we develop proof-of-concept multifunctional composite rebars with built-in triboelectric nanogenerator mechanisms.
View Article and Find Full Text PDFEarly detection of infectious diseases is crucial for reducing transmission and facilitating early intervention. In this study, we built a real-time smartwatch-based alerting system that detects aberrant physiological and activity signals (heart rates and steps) associated with the onset of early infection and implemented this system in a prospective study. In a cohort of 3,318 participants, of whom 84 were infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), this system generated alerts for pre-symptomatic and asymptomatic SARS-CoV-2 infection in 67 (80%) of the infected individuals.
View Article and Find Full Text PDFThe large amount of biomedical data derived from wearable sensors, electronic health records, and molecular profiling (e.g., genomics data) is rapidly transforming our healthcare systems.
View Article and Find Full Text PDFDiscovering novel multifunctional metamaterials with energy harvesting and sensing functionalities is likely to be the next technological evolution of the metamaterial science. Here, we introduce a novel concept called self-aware composite mechanical metamaterial (SCMM) that can transform mechanical metamaterials into nanogenerators and active sensing mediums. In pursuit of this goal, we examine new paradigms where finely tailored and seamlessly integrated self-recovering snapping microstructures composed of topologically different triboelectric materials can form self-powering and self-sensing meta-tribomaterial systems.
View Article and Find Full Text PDFThis study investigates the feasibility of using a new self-powered sensing and data logging system for postoperative monitoring of spinal fusion progress. The proposed diagnostic technology directly couples a piezoelectric transducer signal into a Fowler-Nordheim (FN) quantum tunneling-based synchronized dynamical system to record the mechanical usage of spinal fixation devices. The operation of the proposed implantable FN sensor-data-logger is completely self-powered by harvesting the energy from the micro-motion of the spine during the course of fusion.
View Article and Find Full Text PDFEarly detection of infectious disease is crucial for reducing transmission and facilitating early intervention. We built a real-time smartwatch-based alerting system for the detection of aberrant physiological and activity signals (e.g.
View Article and Find Full Text PDFGenomic data analysis across multiple cloud platforms is an ongoing challenge, especially when large amounts of data are involved. Here, we present Swarm, a framework for federated computation that promotes minimal data motion and facilitates crosstalk between genomic datasets stored on various cloud platforms. We demonstrate its utility via common inquiries of genomic variants across BigQuery in the Google Cloud Platform (GCP), Athena in the Amazon Web Services (AWS), Apache Presto and MySQL.
View Article and Find Full Text PDFMotivation: A major drawback of executing genomic applications on cloud computing facilities is the lack of tools to predict which instance type is the most appropriate, often resulting in an over- or under- matching of resources. Determining the right configuration before actually running the applications will save money and time. Here, we introduce Hummingbird, a tool for predicting performance of computing instances with varying memory and CPU on multiple cloud platforms.
View Article and Find Full Text PDF