Turbidity is an important water quality parameter, especially for drinking water. The ability to actively monitor the turbidity level of drinking water distribution systems is of critical importance to the safety and wellbeing of the public. Traditional turbidity monitoring methods involve the manual collection of water samples at set locations and times followed by laboratory analysis, which are labor intensive and time consuming.
View Article and Find Full Text PDFHigh energy consumption and formation of harmful byproducts are two challenges faced by advanced oxidation processes (AOPs). While much research efforts have been devoted to improving the treatment efficiency, byproduct formation and control calls for more attention. In this study, the underlying mechanism of bromate formation inhibition during a novel plasmon-enhanced catalytic ozonation process with silver-doped spinel ferrite (0.
View Article and Find Full Text PDFIn recent decades the electro-Fenton process has widely been utilized for removing recalcitrant compounds. However, this process is accompanied by several problems such as limited working pH range, production of significant amount of iron sludge, and incapability in reusing used iron ions. Hence, the heterogeneous electro-Fenton process is a convenient way to address these problems.
View Article and Find Full Text PDF