Publications by authors named "Aminuddin bin Saim"

Conditioned medium from cultured fibroblast cells is recognized to promote wound healing and growth through the secretion of enzymes, extracellular matrix proteins, and various growth factors and cytokines. The objective of this study was to profile the secreted proteins present in nasal fibroblast conditioned medium (NFCM). Nasal fibroblasts isolated from human nasal turbinates were cultured for 72 h in Defined Keratinocytes Serum Free Medium (DKSFM) or serum-free F12: Dulbecco's Modified Eagle's Medium (DMEM) to collect conditioned medium, denoted as NFCM_DKSFM and NFCM_FD, respectively.

View Article and Find Full Text PDF

A key event in wound healing is re-epithelialisation, which is mainly regulated via paracrine signalling of cytokines, chemokines, and growth factors secreted by fibroblasts. Fibroblast-secreted factors can be collected from the used culture medium, known as dermal fibroblast conditioned medium (DFCM). The goal of this study was to optimise the culture condition to acquire DFCM and evaluate its effect on keratinocyte attachment, proliferation, migration, and differentiation.

View Article and Find Full Text PDF

The normal function of the airway epithelium is vital for the host's well-being. Conditions that might compromise the structure and functionality of the airway epithelium include congenital tracheal anomalies, infection, trauma and post-intubation injuries. Recently, the onset of COVID-19 and its complications in managing respiratory failure further intensified the need for tracheal tissue replacement.

View Article and Find Full Text PDF

Three-dimensional (3D) in vitro skin models have been widely used for cosmeceutical and pharmaceutical applications aiming to reduce animal use in experiment. This study investigate capability of ovine tendon collagen type I (OTC-I) sponge suitable platform for a 3D in vitro skin model using co-cultured skin cells (CC) containing human epidermal keratinocytes (HEK) and human dermal fibroblasts (HDF) under submerged (SM) and air-liquid interface (ALI) conditions. Briefly, the extracted OTC-I was freeze-dried and crosslinked with genipin (OTC-I_GNP) and carbodiimide (OTC-I_EDC).

View Article and Find Full Text PDF

Poor oral health has been associated with several chronic and systemic disease. Currently, the most common method of teeth cleaning is the use of a toothbrush together with dentifrices. However, natural chewing stick such as miswak is still used in many developing countries due to their low cost and availability.

View Article and Find Full Text PDF

Nasal injury following nasal surgery is an adverse consequence, and prompt treatment should be initiated. Nasal packing, either non-absorbable or absorbable, are commonly used after nasal surgery to prevent bleeding and promote wound healing. In the current study, a novel gelatine sponge crosslinked with genipin was evaluated for suitability to be used as nasal packing and compared to one of the frequently used commercial nasal packing made up of polyurethane.

View Article and Find Full Text PDF

Cardiovascular disease is a major public health burden worldwide. Myocardial infarction is the most common form of cardiovascular disease resulting from low blood supply to the heart. It can lead to further complications such as cardiac arrhythmia, toxic metabolite accumulation, and permanently infarcted areas.

View Article and Find Full Text PDF

Over-induction of epithelial to mesenchymal transition (EMT) by tumor growth factor beta (TGFβ) in keratinocytes is a key feature in keloid scar. The present work seeks to investigate the effect of Kelulut honey (KH) on TGFβ-induced EMT in human primary keratinocytes. Image analysis of the real time observation of TGFβ-induced keratinocytes revealed a faster wound closure and individual migration velocity compared to the untreated control.

View Article and Find Full Text PDF

Nasal mucosa injury can be caused by trauma, radiotherapy, chronic infection such as sinusitis, and post sinus surgery. The rate of healing and its treatment are important in the recovery of patients especially in post sinus surgery, which introduces new injuries. In this review, the current knowledge in terms of the mechanism underlying nasal wound healing was initially discussed.

View Article and Find Full Text PDF

Epithelial-mesenchymal transition (EMT) is a significant dynamic process that causes changes in the phenotype of epithelial cells, changing them from their original phenotype to the mesenchymal cell phenotype. This event can be observed during wound healing process, fibrosis and cancer. EMT-related diseases are usually caused by inflammation that eventually leads to tissue remodeling in the damaged tissue.

View Article and Find Full Text PDF

Wharton's jelly-derived mesenchymal stem cells (WJ-MSCs) are emerging as a promising source for bone regeneration in the treatment of bone defects. Previous studies have reported the ability of WJ-MSCs to be induced into the osteogenic lineage. The purpose of this review was to systematically assess the potential of WJ-MSC differentiation into the osteogenic lineage.

View Article and Find Full Text PDF

Background: One of the molecular mechanisms involved in upper airway-related diseases is epithelial-to-mesenchymal transition (EMT). Olea europaea (OE) has anti-inflammatory properties and thus, great potential to prevent EMT. This study aimed to investigate the effect of OE on EMT in primary nasal human respiratory epithelial cells (RECs).

View Article and Find Full Text PDF

Unlabelled: Various clinical disorders and injuries, such as chemical, thermal, or mechanical injuries, may lead to corneal loss that results in blindness. : The aims of this study were to differentiate human buccal mucosa (BMuc) into corneal epithelial-like cells, to fabricate engineered corneal tissue using buccal mucosal epithelial cells, and to reconstruct a damaged corneal epithelium in a nude rat model.

Methods: BMuc were subjected to 10 d of induction factors to investigate the potential of cells to differentiate into corneal lineages.

View Article and Find Full Text PDF

Fibrin has excellent biocompatibility and biological properties to support tissue regeneration and promote wound healing. However, the role of diluted fibrin in wound healing has yet to be elucidated as it is commonly used in high concentration. This study was aimed to examine the effects of diluted plasma-derived fibrin (PDF) on keratinocyte and fibroblast wound healing in term of cell proliferation, migration, extracellular matrix (ECM) production and soluble factor secretion.

View Article and Find Full Text PDF

Advances in tissue engineering led to the development of various tissue-engineered skin substitutes (TESS) for the treatment of skin injuries. The majority of the autologous TESS required lengthy and costly cell expansion process to fabricate. In this study, we determine the possibility of using a low density of human skin cells suspended in platelet-rich plasma (PRP)-enriched medium to promote the healing of full-thickness skin wounds.

View Article and Find Full Text PDF

Tracheal replacement is performed after resection of a portion of the trachea that was impossible to reconnect via direct anastomosis. A tissue-engineered trachea is one of the available options that offer many advantages compared to other types of graft. Fabrication of a functional tissue-engineered trachea for grafting is very challenging, as it is a complex organ with important components, including cartilage, epithelium and vasculature.

View Article and Find Full Text PDF

Objective: When given in conjunction with surgery for treating cancer, radiation therapy may result in impaired wound healing, which, in turn, could cause skin ulcers. In this study, bilayer and monolayer autologous skin substitutes were used to treat an irradiated wound.

Materials And Methods: A single dose of 30 Gy of linear electron beam radiation was applied to the hind limb of nude mice before creating the skin lesion (area of 78.

View Article and Find Full Text PDF

Limitations of current treatments for skin loss caused by major injuries leads to the use of skin substitutes. It is assumed that secretion of wound healing mediators by these skin substitutes plays a role in treating skin loss. In our previous study, single layer keratinocytes (SK), single layer fibroblast (SF) and bilayer (BL; containing keratinocytes and fibroblasts layers) skin substitutes were fabricated using fibrin that had shown potential to heal wounds in preclinical studies.

View Article and Find Full Text PDF

Objectives: This study aimed to isolate, culture-expand and characterize the chondrocytes isolated from microtic cartilage and evaluate its potential as a cell source for ear cartilage reconstruction. Specific attention was to construct the auricular cartilage tissue by using fibrin as scaffold.

Study Design: Cell culture experiment with the use of microtic chondrocytes.

View Article and Find Full Text PDF

With the worldwide growth of cell and tissue therapy (CTT) in treating diseases, the need of a standardized regulatory policy is of paramount concern. Research in CTT in Malaysia has reached stages of clinical trials and commercialization. In Malaysia, the regulation of CTT is under the purview of the National Pharmaceutical Control Bureau (NPCB), Ministry of Health (MOH).

View Article and Find Full Text PDF

Background Aims: Platelet-rich plasma (PRP) has been found to contain a high concentration of growth factors that are present during the process of healing. Studies conducted found that application of PRP accelerates wound healing. In this study, we characterized the skin cell suspension harvested using the co-isolation technique and evaluated the effects of PRP (10% and 20%, v/v) on co-cultured keratinocytes and fibroblasts in terms of wound healing.

View Article and Find Full Text PDF

Calcium phosphate-based bone substitutes have not been used to repair load-bearing bone defects due to their weak mechanical property. In this study, we reevaluated the functional outcomes of combining ceramic block with osteogenic-induced mesenchymal stem cells and platelet-rich plasma (TEB) to repair critical-sized segmental tibial defect. Comparisons were made with fresh marrow-impregnated ceramic block (MIC) and partially demineralized allogeneic bone block (ALLO).

View Article and Find Full Text PDF

Split-skin grafting (SSG) is the gold standard treatment for full-thickness skin defects. For certain patients, however, an extensive skin lesion resulted in inadequacies of the donor site. Tissue engineering offers an alternative approach by using a very small portion of an individual's skin to harvest cells for propagation and biomaterials to support the cells for implantation.

View Article and Find Full Text PDF

Background & Objectives: Various materials have been used as scaffolds to suit different demands in tissue engineering. One of the most important criteria is that the scaffold must be biocompatible. This study was carried out to investigate the potential of HA or TCP/HA scaffold seeded with osteogenic induced sheep marrow cells (SMCs) for bone tissue engineering.

View Article and Find Full Text PDF

Animal-derivative free reagents are preferred in skin cell culture for clinical applications. The aim of this study was to compare the performance and effects between animal-derived trypsin and recombinant trypsin for skin cells culture and expansion. Full thickness human skin was digested in 0.

View Article and Find Full Text PDF