Publications by authors named "Amine Moubarik"

Extracting The extraction of cellulose and lignin from biomass is essential for the development of sustainable bio-based materials. This study examines the effects of physical pretreatment techniques-ultrasound (US), pulsed electric fields (PEF), and high-voltage electrical discharges (HVED)-on the efficiency of alkali treatment for cellulose and lignin extraction from walnut shells. The primary objective was to enhance extraction yields and improve extract quality while evaluating the effectiveness of these methods.

View Article and Find Full Text PDF

The environmental implications of utilizing walnut shells (WSs) as a material for energy storage are complex, balanced between advancing technologies and improving efficiency. This review aims to address, for the first time, environmental concerns and health effects associated with this material by conducting an in-depth analysis of carbon materials derived from waste management systems. Beginning with a reevaluation of the structural characteristics, cellular morphology, and physicochemical properties of WSs, this study explores their potential for the efficient synthesis of carbon.

View Article and Find Full Text PDF

In the pursuit of sustainable materials for environmental remediation, this study presents the development and comprehensive characterization of cobalt ferrite nanoparticles (CFNPs) incorporated in lignocellulosic-derived sodium alginate (CFNPs@LCG-SA) biocomposite beads. These biobased beads exhibit exceptional adsorption capabilities, particularly for methylene blue (MB) dyes, rendering them promising candidates for wastewater treatment. Using a comprehensive range of analytical techniques, including Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), thermogravimetric analysis-derivative thermogravimetry (TGA/DTG), scanning electron microscopy (SEM), energy-dispersive X-ray (EDX), etc.

View Article and Find Full Text PDF

This study investigates the synergistic effects of alginate@montmorillonite (Alg@Mt) hybrid microcapsules for enhancing water purification, focusing on improving the encapsulation of hydrophobic contaminants. Alg@Mt microcapsules were prepared through ionotropic gelation. Characterisation was performed using SEM-EDX, FTIR, XRD, and TGA.

View Article and Find Full Text PDF

Recently, Cellulose microfibers (CMF) have garnered significant attention due to their renewability, biodegradability, and unique properties such as high aspect ratio, low density, high strength, stiffness, and distinctive optical properties. These characteristics have been highlighted in publications worldwide. However, the structure of CMF is difficult to access with solvents, limiting its dissolution in common organic solvents.

View Article and Find Full Text PDF

Tannin, after lignin, is one of the most abundant sources of natural aromatic biomolecules. It has been used and chemically modified during the past few decades to create novel biobased materials. This work intended to functionalize for the first time quebracho Tannin (T) through a simple phosphorylation process in a urea system.

View Article and Find Full Text PDF

In this work, chitin (CT) was isolated from shrimp shell waste (SSW) and was then phosphorylated using diammonium hydrogen phosphate (DAP) as a phosphorylating agent in the presence of urea. The prepared samples were characterized using Scanning Electron Microscopy (SEM) and EDX-element mapping, Fourier Transform Infrared Spectroscopy (ATR-FTIR), X-Ray Diffraction (XRD), Thermogravimetric Analysis (TGA/DTG), conductometric titration, Degree of Substitution (DS) and contact angle measurements. The results of characterization techniques reveal the successful extraction and phosphorylation of chitin.

View Article and Find Full Text PDF

To fulfill the unprecedented valorization approaches for lignocellulose, this work focuses on the potential of lignin-derived catalytic systems for bio-remediation, which are natural materials perceived to address the increased demand for eco-conscious catalyzed processes. A useful lignin-functionalized cobalt (Lig-Co) catalyst has been prepared, well-characterized and deployed for the catalyzed reducing decomposition of stable harmful organic pollutants such as methylene blue (MB) and methyl orange (MO), in simple and binary systems. The multifunctional character of lignin and the presence of various active sites can promote effectively loaded metal nanoparticles (NPs).

View Article and Find Full Text PDF

The overwhelming concerns of water pollution, industrial discharges and environmental deterioration by various organic and inorganic substances, including dyes, heavy metals, pesticides, pharmaceuticals, and detergents, intrinsically drive the search for urgent and efficacious decontamination techniques. This review illustrates the various approaches to remediation, their fundamentals, characteristics and demerits. In this manner, the advantageous implementation of nature-based adsorbents has been outlined and discussed.

View Article and Find Full Text PDF

This study aims to investigate the mechanical behavior of alginate-based simple and alginate@clay-based hybrid capsules under uniaxial compression using a Brookfield force machine. The effect of clay type and content on Young's modulus and nominal rupture stress of the capsules was investigated and characterized using Scanning Electron Microscopy (SEM), and Fourier Transform Infrared Spectroscopy (ATR-FTIR). Results showed that clay content improves the mechanical properties depending on its type.

View Article and Find Full Text PDF

This work describes the preparation of new eco-friendly adsorbents with a simple method. Gel beads of coffee grounds cellulose (CGC) and sodium alginate (SA) were prepared for wastewater treatment. Upon their synthesis, the physicochemical properties, performances and efficiency were analyzed by means of various structural and morphological characterizations.

View Article and Find Full Text PDF
Article Synopsis
  • Catalytic systems from lignin are gaining popularity due to their efficiency and profitability, with this study focusing on comparing two types of lignin-based catalysts: direct sulfonation lignin (DSL) and carbonized-sulfonated lignin (CSL).
  • The DSL catalyst demonstrated slightly lower yields than CSL (93.97% vs. 94.11%) but offered a faster reaction time and required less energy input, indicating it has more active catalytic sites.
  • Both catalysts showed good stability and reusability over multiple cycles, but their performance can be affected by the leaching of active groups, suggesting that direct functionalization of lignin can be a better alternative to traditional methods.
View Article and Find Full Text PDF

The current study investigates for the first time the physico-chemical performances of lignins from cactus waste seeds (CWS) and spent coffee (SC) in comparison to previously isolated lignins from sugar byproducts (bagasse (SCB) and beet pulp (SBP)). In this work, lignin-phenol formaldehyde (LPF) resins were formulated using various lignin loadings (5-30 wt%), characterized and applied in the manufacturing of plywood panels. Several characterization techniques were applied to identify the chemical and morphological properties, thermal stability, and phenolic content of the extracted lignins, as well as the bonding strength and wood failure of the formulated resins.

View Article and Find Full Text PDF
Article Synopsis
  • Lignin was extracted from sugar beet pulp in Morocco and characterized using FTIR and TG/DTA analysis.
  • The lignin was utilized to improve the detection of lead (II) ions through a carbon paste electrode (CPE) using techniques like cyclic and square-wave voltammetry.
  • The developed sensor achieved a minimum detection limit of 2.252 x 10^-6 M for lead (II) and effectively analyzed tap water samples for this heavy metal.
View Article and Find Full Text PDF

Cactus fruit waste seeds (CWS) are a by-product of the cactus fruit processing industry. Until now, CWS are not recoverable in any sector. The valorization of these residues may reduce their volume in the environment and transform them into valuable products.

View Article and Find Full Text PDF