A simple model is developed for membrane fouling, taking into account two main fouling phenomena: cake formation, due to attached solids on the membrane surface, and pore clogging, due to retained compounds inside the pores. The model is coupled with a simple anaerobic digestion model for describing the dynamics of an anaerobic membrane bioreactor (AnMBR). In simulations, we investigate its qualitative behavior: it is shown that the model exhibits satisfying properties in terms of a flux decrease due to membrane fouling.
View Article and Find Full Text PDFThis study aims to investigate the effect of operational conditions on organic fouling occurring in a direct contact membrane distillation (DCMD) system used to treat wastewater. A mixed solution of sodium alginate (SA) and bovine serum albumin (BSA) was used as a feed solution to simulate polysaccharides and proteins, respectively, assumed as the main organic foulants. The permeate flux was observed at two feed temperatures 35 and 50 °C, as well as three feed solution pH 4, 6, and 8.
View Article and Find Full Text PDFThis paper deals with the membrane fouling issue in the Direct Contact Membrane Distillation (DCMD) process treating a wasted sludge from an anaerobic digestion process. The main objective is to define an optimal cleaning strategy to alleviate fouling. Using a lab scale DCMD process, a cleaning strategy based on DI water flushing followed by 0.
View Article and Find Full Text PDFAnaerobic membrane bioreactor (AnMBR) is used for the treatment of organic solid waste. Clogging of filtration membrane pores, called membrane fouling, is one of the most serious issues for the sustainable operation of AnMBR. Although the physical and chemical mechanisms of the membrane fouling have been widely studied, the biological mechanisms are still unclear.
View Article and Find Full Text PDFIn anaerobic membrane bioreactor (AnMBR) treating organic solid waste, acetate is one of the most important precursors to CH. However, the identity and diversity of anaerobic acetate degraders are largely unknown, possibly due to their slow growth rates and low abundances. Here, we identified acetate-degrading microorganisms in the AnMBR sludges by high-sensitivity stable isotope probing.
View Article and Find Full Text PDFThe use of anaerobic membrane bioreactor technology (AnMBR) is rapidly expanding. However, depending on the application, AnMBR design and operation is not fully mature, and needs further research to optimize process efficiency and enhance applicability. This paper reviews state-of-the-art of AnMBR focusing on modelling and control aspects.
View Article and Find Full Text PDFThe study presents a mathematical model developed to better understand and control membrane fouling in a single-staged, anaerobic fluidized bed membrane bioreactor (AFMBR) using polyethylene terephthalate (PET) beads as scouring media. The model was based on combining the anaerobic biological model AM2b and a fouling model applied in membrane filtration. The presented model was validated using experimental data obtained by a laboratory scaled AFMBR reactor run during 250 d under various operational conditions.
View Article and Find Full Text PDFA mathematical model has been developed to better understand fouling mitigation mechanisms in particle-sparged membrane bioreactor. The model developed herein assumes two fouling mechanisms, (i) the pore blocking leading to the decrease in membrane surface porosity and (ii) the progressive development of compressible cake layer on the membrane surface. The model has been validated by comparison with trans-membrane pressure data registered from the bioreactor filtering a synthetic solution consisting of bentonite, sodium alginate and bovin serum albumine (BSA).
View Article and Find Full Text PDFAn Anaerobic Membrane BioReactors (AnMBR) model is presented in this paper based on the combination of a simple fouling model and the Anaerobic Model 2b (AM2b) to describe biological and membrane dynamic responses in an AnMBR. In order to enhance the model calibration and validation, Trans-Membrane Pressure (TMP), Total Suspended Solid (TSS), COD, Volatile Fatty Acid (VFA) and methane production were measured. The model shows a satisfactory description of the experimental data with R≈0.
View Article and Find Full Text PDFThis study aims to better understand biofouling by algal organic matters (AOM) during seawater pretreatment by microfiltration (MF). To simulate AOM biofouling, sodium alginate (SA) solutions with three different concentrations (2, 20 and 50ppm) were filtered in dead-end mode with MF membrane. A modelling approach with blocking laws was used to identify the fouling mechanisms behind flux decline with time.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
January 2019
Gas sparging is used as a traditional way to control membrane fouling in submerged membrane bioreactors (MBRs) in wastewater treatment. However, the gas sparging accounts for the largest fraction in operational cost to run the MBR systems. In this study, membrane fouling was controlled by integrating scouring media with gas sparging to reduce fouling rate at relatively low operational energy.
View Article and Find Full Text PDFIn this paper, we investigate the fouling mechanisms responsible for MF and UF membrane flux decline in Anaerobic Membrane Bioreactors (AnMBR). We have used the fouling mechanism models proposed by Hermia (1982), namely pore constriction, cake formation, complete blocking and intermediate blocking. Based on an optimization approach and using experimental data extracted from the literature, we propose a systematic procedure for identifying the most likely fouling mechanism in play.
View Article and Find Full Text PDF