We rigorously investigated the mid-infrared supercontinuum generation in a multimode AsSe chalcogenide photonic crystal fiber (PCF). We studied the impact of the intermodal nonlinear effects on the nonlinear propagation of the fundamental and high-order modes. By solving the multimode generalized nonlinear Schrödinger equation, we have predicted the generation of a very broadband supercontinuum in both polarizations of the fundamental mode spanning from 2 to 11 μm at -20 dB in only 5 cm PCF length.
View Article and Find Full Text PDFWe numerically report super-flat coherent mid-infrared supercontinuum (MIR-SC) generation in a chalcogenide AsSe photonic crystal fiber (PCF). The dispersion and nonlinear parameters of AsSe chalcogenide PCFs by varying the diameter of the air holes are engineered to obtain all-normal dispersion (ANDi) with high nonlinearities. We show that launching low-energy 50 fs optical pulses with 0.
View Article and Find Full Text PDFWe numerically studied supercontinuum (SC) generation in a few-mode photonic crystal fiber (PCF). We have shown the impact of the intermodal nonlinear effects that could limit the fundamental mode nonlinear propagation due to the coupling induced by high-order optical modes. We have demonstrated an accurate modeling of the SC generation into the multimode PCF by solving the multimode generalized nonlinear Shrödinger equation (MM-GNLSE).
View Article and Find Full Text PDFWe experimentally demonstrate an efficient information transmission technique using Laguerre Gaussian (LG) modes. This technique is based on multiplexing and demultiplexing multiple LG modes with different azimuthal and radial components. At the reception, the initially sent modes encoding the information are extracted with high fidelity using a complete decomposition allowing to identify a particular mode from a set of modes within a unique iteration.
View Article and Find Full Text PDFMode division multiplexing (MDM) is mooted as a technology to address future bandwidth issues, and has been successfully demonstrated in free space using spatial modes with orbital angular momentum (OAM). To further increase the data transmission rate, more degrees of freedom are required to form a densely packed mode space. Here we move beyond OAM and demonstrate multiplexing and demultiplexing using both the radial and azimuthal degrees of freedom.
View Article and Find Full Text PDFWe design As2Se3 and As2S3 chalcogenide photonic nanowires to optimize the soliton self-compression with short distances and ultralow input pulse energy. We numerically demonstrate the generation of single optical cycle in an As2S3 photonic nanowire: a 5.07 fs compressed pulse is obtained starting from 250 fs input pulse with 50 pJ in 0.
View Article and Find Full Text PDF