Publications by authors named "Amina Tassa"

In response to starvation, cells undergo increased levels of autophagy and cell cycle arrest but the role of autophagy in starvation-induced cell cycle arrest is not fully understood. Here we show that autophagy genes regulate cell cycle arrest in the budding yeast Saccharomyces cerevisiae during nitrogen starvation. While exponentially growing wild-type yeasts preferentially arrest in G₁/G₀ in response to starvation, yeasts carrying null mutations in autophagy genes show a significantly higher percentage of cells in G₂/M.

View Article and Find Full Text PDF

β-adrenergic signaling is involved in the development of cardiac hypertrophy (CH), justifying the use of β-blockers as a therapy to minimize and postpone the consequences of this disease. Evidence suggests that adenylate cyclase, a downstream effector of the β-adrenergic pathway, might be a therapeutic target. We examined the effects of the anti-epileptic drug carbamazepine (CBZ), an inhibitor of adenylate cyclase.

View Article and Find Full Text PDF

The United States Food and Drug Administration-approved antibiotic doxycycline (DOX) inhibits matrix metalloproteases, which contribute to the development of cardiac hypertrophy (CH). We hypothesized that DOX might serve as a treatment for CH. The efficacy of DOX was tested in two mouse models of CH: induced by the beta-adrenergic agonist isoproterenol (ISO) and induced by transverse aortic banding.

View Article and Find Full Text PDF

Apoptosis and autophagy are both tightly regulated biological processes that play a central role in tissue homeostasis, development, and disease. The anti-apoptotic protein, Bcl-2, interacts with the evolutionarily conserved autophagy protein, Beclin 1. However, little is known about the functional significance of this interaction.

View Article and Find Full Text PDF

Lysosomal proteases are abundantly expressed in fetal muscles, but poorly represented in the adult skeletal muscles. The lysosomal proteolytic system is nonetheless stimulated in adult muscles in a variety of pathological conditions. Furthermore, recent investigations describe autophagosomes in muscle fibers in vitro and in vivo, and report myopathies with excessive autophagy.

View Article and Find Full Text PDF

Skeletal muscle is the major reservoir of body protein that can be mobilized in a number of muscle wasting conditions, that include kidney failure. Increased proteolysis in such conditions provides free amino acids that are used for acute-phase protein synthesis or that are degraded for energy purposes. Amino acids act as signals to regulate both protein synthesis and protein breakdown.

View Article and Find Full Text PDF

In ElasCCK2 transgenic mice expressing cholecystokinin (CCK2) receptor in acinar cells, pancreatic phenotypic alterations and preneoplastic lesions are observed. We determined whether activation of phospholipase C gamma1 (PLCgamma1), known to contribute to the tumorigenesis pathophysiology, could take place as a new signaling pathway induced by the CCK2 receptor. Overexpression and activation of the PLCgamma1 in response to gastrin was observed in acinar cells.

View Article and Find Full Text PDF

Increased proteolysis contributes to muscle atrophy that prevails in many diseases. Elucidating the signalling pathways responsible for this activation is of obvious clinical importance. Autophagy is a ubiquitous degradation process, induced by amino acid starvation, that delivers cytoplasmic components to lysosomes.

View Article and Find Full Text PDF