Publications by authors named "Amina Eladdadi"

Cancer metastasis accounts for a majority of cancer-related deaths worldwide. Metastasis occurs when the primary tumor sheds cells into the blood and lymphatic circulation, thereby becoming circulating tumor cells (CTCs) that transverse through the circulatory system, extravasate the circulation and establish a secondary distant tumor. Accumulating evidence suggests that circulating effector CD T cells are able to recognize and attack arrested or extravasating CTCs, but this important antitumoral effect remains largely undefined.

View Article and Find Full Text PDF

Genomics and proteomics have been central to identify tumor cell populations, but more accurate approaches to classify cell subtypes are still lacking. We propose a new methodology to accurately classify cancer cells based on their organelle spatial topology. Herein, we developed an organelle topology-based cell classification pipeline (OTCCP), which integrates artificial intelligence (AI) and imaging quantification to analyze organelle spatial distribution and inter-organelle topology.

View Article and Find Full Text PDF

Combining chimeric antigen receptor T (CAR-T) cells with oncolytic viruses (OVs) has recently emerged as a promising treatment approach in preclinical studies that aim to alleviate some of the barriers faced by CAR-T cell therapy. In this study, we address by means of mathematical modeling the main question of whether a single dose or multiple sequential doses of CAR-T cells during the OVs therapy can have a synergetic effect on tumor reduction. To that end, we propose an ordinary differential equations-based model with virus-induced synergism to investigate potential effects of different regimes that could result in efficacious combination therapy against tumor cell populations.

View Article and Find Full Text PDF

In this paper, we investigate how natural killer (NK) cell recruitment to the tumor microenvironment (TME) affects oncolytic virotherapy. NK cells play a major role against viral infections. They are, however, known to induce early viral clearance of oncolytic viruses, which hinders the overall efficacy of oncolytic virotherapy.

View Article and Find Full Text PDF

In this paper, we apply a new approach to a special class of discrete time evolution models and establish a solid mathematical foundation to analyse them. We propose new single and multi-species evolutionary competition models using the evolutionary game theory that require a more advanced mathematical theory to handle effectively. A key feature of this new approach is to consider the discrete models as non-autonomous difference equations.

View Article and Find Full Text PDF

Mesenchymal stem cells (MSCs) loaded with oncolytic viruses are presently being investigated as a new modality of advanced/metastatic tumors treatment and enhancement of virotherapy. MSCs can, however, either promote or suppress tumor growth. To address the critical question of how MSCs loaded with oncolytic viruses affect virotherapy outcomes and tumor growth patterns in a tumor microenvironment, we developed and analyzed an integrated mathematical-experimental model.

View Article and Find Full Text PDF

Oncolytic virotherapy has been emerging as a promising novel cancer treatment which may be further combined with the existing therapeutic modalities to enhance their effects. To investigate how virotherapy could enhance chemotherapy, we propose an ODE based mathematical model describing the interactions between tumour cells, the immune response, and a treatment combination with chemotherapy and oncolytic viruses. Stability analysis of the model with constant chemotherapy treatment rates shows that without any form of treatment, a tumour would grow to its maximum size.

View Article and Find Full Text PDF

In the present paper, we address by means of mathematical modeling the following main question: How can oncolytic virus infection of some normal cells in the vicinity of tumor cells enhance oncolytic virotherapy? We formulate a mathematical model describing the interactions between the oncolytic virus, the tumor cells, the normal cells, and the antitumoral and antiviral immune responses. The model consists of a system of delay differential equations with one (discrete) delay. We derive the model's basic reproductive number within tumor and normal cell populations and use their ratio as a metric for virus tumor-specificity.

View Article and Find Full Text PDF

Chemovirotherapy is a combination therapy with chemotherapy and oncolytic viruses. It is gaining more interest and attracting more attention in the clinical setting due to its effective therapy and potential synergistic interactions against cancer. In this paper, we develop and analyse a mathematical model in the form of parabolic non-linear partial differential equations to investigate the spatiotemporal dynamics of tumour cells under chemovirotherapy treatment.

View Article and Find Full Text PDF

We present a novel mathematical model involving various immune cell populations and tumor cell populations. The model describes how tumor cells evolve and survive the brief encounter with the immune system mediated by natural killer (NK) cells and the activated CD8(+) cytotoxic T lymphocytes (CTLs). The model is composed of ordinary differential equations describing the interactions between these important immune lymphocytes and various tumor cell populations.

View Article and Find Full Text PDF

The overexpression of certain membrane-bound receptors is a hallmark of cancer progression and it has been suggested to affect the organization, activation, recycling and down-regulation of receptor-ligand complexes in human cancer cells. Thus, comparing receptor trafficking pathways in normal vs. cancer cells requires the ability to image cells expressing dramatically different receptor expression levels.

View Article and Find Full Text PDF

Biofilms are present in all natural, medical and industrial surroundings where bacteria live. Biofilm formation is a key factor in the growth and transport of both beneficial and harmful bacteria. While much is known about the later stages of biofilm formation, less is known about its initiation which is an important first step in the biofilm formation.

View Article and Find Full Text PDF

In this paper, we present a mathematical model predicting the fraction of proliferating cells in G1, S, and G2/M phases of the cell cycle as a function of EGFR and HER2. We show that it is possible to find parameters for the mathematical model so that its predictions agree with the experimental observations that HER2 over-expression results in: (1) a shorter G1-phase and early S-phase entry; (2) and that with a 1-to-1 ration between EGFR and HER2, the growth advantage in HER2 over-expressing cells is indeed associated with the increase of the HER2 expression level.

View Article and Find Full Text PDF

We present a mathematical model to study the effects of HER2 over-expression on cell proliferation in breast cancer. The model illustrates the proliferative behavior of cells as a function of HER2 and EGFR receptors numbers, and the growth factor EGF. This mathematical model comprises kinetic equations describing the cell surface binding of EGF growth factor to EGFR and HER2 receptors, coupled to a model for the dependence of cell proliferation rate on growth factor receptors binding.

View Article and Find Full Text PDF