Publications by authors named "Amin Zeynolabedin"

Discharge of pollution loads into natural water systems remains a global challenge that threatens water and food supply, as well as endangering ecosystem services. Natural rehabilitation of contaminated streams is mainly influenced by the longitudinal dispersion coefficient, or the rate of longitudinal dispersion (D), a key parameter with large spatiotemporal fluctuations that characterizes pollution transport. The large uncertainty in estimation of D in streams limits the water quality assessment in natural streams and design of water quality enhancement strategies.

View Article and Find Full Text PDF

Successful application of one-dimensional advection-dispersion models in rivers depends on the accuracy of the longitudinal dispersion coefficient (LDC). In this regards, this study aims to introduce an appropriate approach to estimate LDC in natural rivers that is based on a hybrid method of granular computing (GRC) and an artificial neural network (ANN) model (GRC-ANN). Also, adaptive neuro-fuzzy inference system (ANFIS) and ANN models were developed to investigate the accuracy of three credible artificial intelligence (AI) models and the performance of these models in different LDC values.

View Article and Find Full Text PDF