Publications by authors named "Amin Ur Rehman"

Chylothorax is accumulation of chyle in pleural space. Causes include traumatic, such as after esophagectomy, and nontraumatic, most commonly malignancy. Lymphoma usually presents as asymptomatic lymphadenopathy, and chylothorax tends to occur late in disease course.

View Article and Find Full Text PDF

Nematodes as plant pathogens adversely affect food, fiber, and biofuels production by causing plant diseases. A variety of chemical nematicides are being applied to soil, seeds, or foliage with a goal of disease prevention. Despite the proven efficacy of these chemicals against plant-parasitic nematodes, factors like prolonged residual toxicity to human health, environmental pollution, and the risk of resistance development can't be neglected.

View Article and Find Full Text PDF

Both plant receptor-like protein kinases (RLKs) and ubiquitin-mediated proteolysis play crucial roles in plant responses to drought stress. However, the mechanism by which E3 ubiquitin ligases modulate RLKs is poorly understood. In this study, we showed that Arabidopsis PLANT U-BOX PROTEIN 11 (PUB11), an E3 ubiquitin ligase, negatively regulates abscisic acid (ABA)-mediated drought responses.

View Article and Find Full Text PDF

CATH-2TP5 is a linear cationic hybrid peptide, consequent from naturally occurring antimicrobial peptide (AMPs) Cathelicidin-2 (CATH-2) and Immunomodulatory peptide Thymopentin (TP5) having dynamic and potent anti-inflammatory activities without hemolytic effect. The biocompatible mechanism of CATH-2TP5 is favored to explore new methodologies in the direction of biomedical applications. In this retrospectively study, an antiendotoxin and anti-inflammatory hybrid peptide CATH-2TP5 was emulated into pPICZα-A and successfully expressed in .

View Article and Find Full Text PDF

The phytohormone abscisic acid (ABA) and the Polycomb group proteins have key roles in regulating plant growth and development; however, their interplay and underlying mechanisms are not fully understood. Here, we identified an Arabidopsis () nodulin homeobox (AtNDX) protein as a negative regulator in the ABA signaling pathway. AtNDX mutants are hypersensitive to ABA, as measured by inhibition of seed germination and root growth, and the expression of is downregulated by ABA.

View Article and Find Full Text PDF

Cellular redox status plays critical roles in cell division and differentiation, but the underlying mechanism is unclear. Here we explored the effect of redox status on stem cell identity in distal stem cells (DSCs) of Arabidopsis () roots. Treatment with the reductive reagent glutathione and the oxidative reagent HO inhibited DSC differentiation, as did endogenously altering reactive oxygen species production via various mutations.

View Article and Find Full Text PDF