For cancer patients with a high risk of ovarian tissue metastasis, ovarian autotransplantation is not advised due to the potential spread of malignant cells. Ex vivo purging of ovarian fragments may offer a more suitable alternative for fertility restoration. Eradicating malignant cells should be done selectively without affecting follicles or ovarian stromal cells (SCs).
View Article and Find Full Text PDFColloids Surf B Biointerfaces
January 2025
In this study, a bioink based on poly(vinyl alcohol) (PVA) and κ-carrageenan network was prepared using conductive polymer (PEDOT:PSS) as conducting medium, and (+)-Catechin-loaded mesoporous ZnO (CmZnO) as antibacterial and anti-inflammatory active medium. 3D conductive composite dressing was further fabricated by an extrusion 3D printing technology. Our results showed that the as-obtained composite dressing had suitable conductivity, efficient blood clotting capacity, and good adhesiveness.
View Article and Find Full Text PDFOxygen is essential for normal cellular functions. Hypoxia impacts various cellular processes, such as metabolism, growth, proliferation, angiogenesis, metastasis, tumorigenesis, microbial infection, and immune response, mediated by hypoxia-inducible factors (HIFs). Hypoxia contributes to the progression and development of cancer, cardiovascular diseases, metabolic disorders, kidney diseases, and infections.
View Article and Find Full Text PDFInt J Biol Macromol
October 2024
The process of wound healing is intricate and complex, necessitating the intricate coordination of various cell types and bioactive molecules. Despite significant advances, challenges persist in achieving accelerated healing and minimizing scar formation. Herein, a multifunctional hydrogel engineered via dynamic Schiff base crosslinking between oxidized dextran and quaternized chitosan, reinforced with reduced graphene oxide (rGO) is reported.
View Article and Find Full Text PDFThe healing of damaged skin is a complex and dynamic process, and the multi-functional hydrogel dressings could promote skin tissue healing. This study, therefore, explored the development of a composite multifunctional hydrogel (HDCP) by incorporating the dopamine modified hyaluronic acid (HA-DA) and phenylboronic acid modified chitosan (CS-PBA) crosslinked using boric acid ester bonds. The integration of HA-DA and CS-PBA could be confirmed using the Fourier transform infrared spectrometer and H nuclear magnetic resonance analyses.
View Article and Find Full Text PDFInt J Biol Macromol
June 2024
Femoral head necrosis is a debilitating disorder that typically caused by impaired blood supply to the hip joint. In this study, a novel injectable hydrogel based on Oxidized Carboxymethyl Cellulose (OCMC)-Carboxymethyl Chitosan (CMCS) polymers containing an angiogenesis stimulator peptide (QK) with a non-toxic crosslinking interaction (Schiff based reaction) was synthesized to enhance angiogenesis following femoral head necrosis in an animal model. The physicochemical features of fabricated injectable hydrogel were analyzed by FTIR, swelling and degradation rate, rheometry, and peptide release.
View Article and Find Full Text PDFIndole-3-acetic acid (IAA) derived from Actinobacteria fermentations on agro-wastes constitutes a safer and low-cost alternative to synthetic IAA. This study aims to select a high IAA-producing Streptomyces-like strain isolated from Lake Oubeira sediments (El Kala, Algeria) for further investigations (i.e.
View Article and Find Full Text PDFThe management of wound healing represents a significant clinical challenge due to the complicated processes involved. Chitosan has remarkable properties that effectively prevent certain microorganisms from entering the body and positively influence both red blood cell aggregation and platelet adhesion and aggregation in the bloodstream, resulting in a favorable hemostatic outcome. In recent years, chitosan-based hydrogels have been widely used as wound dressings due to their biodegradability, biocompatibility, safety, non-toxicity, bioadhesiveness, and soft texture resembling the extracellular matrix.
View Article and Find Full Text PDFOrganic acids are important compounds with numerous applications in different industries. This work presents a comprehensive review of the biological synthesis of oxalic acid, an important organic acid with many industrial applications. Due to its important applications in pharmaceuticals, textiles, metal recovery, and chemical and metallurgical industries, the global demand for oxalic acid has increased.
View Article and Find Full Text PDFVascularization is crucial for providing nutrients and oxygen to cells while removing waste. Despite advances in 3D-bioprinting, the fabrication of structures with void spaces and channels remains challenging. This study presents a novel approach to create robust yet flexible and permeable small (600-1300 μm) artificial vessels in a single processing step using 3D coaxial extrusion printing of a biomaterial ink, based on tyramine-modified polyethylene glycol (PEG-Tyr).
View Article and Find Full Text PDFIn this study, dissolving microneedles (MNs) using polyvinyl alcohol (PVA) and poly (1-vinylpyrrolidone-co-vinyl acetate) (P(VP-co-VA)) as matrix materials were developed for transdermal delivery of rizatriptan benzoate (RB) for acute migraine treatment. permeation studies were conducted to assess the feasibility of the as-fabricated dissolving MNs to release RB. Drug skin penetration were tested by Franz diffusion cells, showing an increase of the transdermal flux compared to passive diffusion due to the as-fabricated dissolving MNs having a sufficient mechanical strength to penetrate the skin and form microchannels.
View Article and Find Full Text PDFNanoformulations for combining chemotherapy, chemodynamic therapy, and photothermal therapy have enormous potential in tumor treatment. Coating nanoformulations with cell membranes endows them with homologous cellular mimicry, enabling nanoformulations to acquire new functions and properties, including homologous targeting and long circulation in vivo, and can enhance internalization by homologous cancer cells. Herein, we fused multifunctional biomimetic nanoformulations based on Cu-doped zeolitic imidazolate framework-8 (ZIF-8).
View Article and Find Full Text PDFThe increased demand for improved strategies for wound healing has, in recent years, motivated the development of multifunctional hydrogels with favorable bio-compatibility and antibacterial properties. To this regard, the current study presented the design of a novel self-healing composite hydrogel that could perform as wound dressing for the promotion of wound healing. The composite hydrogels were composed of polyvinyl alcohol (PVA), borax and chitosan functionalized with sialic acid (SA-CS) and curcumin loaded pluronic F127 micelles.
View Article and Find Full Text PDFPlastic wastes accumulated due to food packaging pose environmental threats. This study proposes biopolymeric films containing lignins extracted from potato crop residues (PCR) through organosolv treatment as a green alternative to non-degradable food packaging. The isolation process yielded 43.
View Article and Find Full Text PDFOxygen (O), nitric oxide (NO), carbon monoxide (CO), hydrogen sulfide (HS), and hydrogen (H) with direct effects, and carbon dioxide (CO) with complementary effects on the condition of various diseases are known as therapeutic gases. The targeted delivery and in situ generation of these therapeutic gases with controllable release at the site of disease has attracted attention to avoid the risk of gas poisoning and improve their performance in treating various diseases such as cancer therapy, cardiovascular therapy, bone tissue engineering, and wound healing. Stimuli-responsive gas-generating sources and delivery systems based on biomaterials that enable on-demand and controllable release are promising approaches for precise gas therapy.
View Article and Find Full Text PDFThere is an urgent need for research into effective interventions for pain management to improve patients' life quality. Traditional needle and syringe injection were used to administer the local anesthesia. However, it causes various discomforts, ranging from brief stings to trypanophobia and denial of medical operations.
View Article and Find Full Text PDFAn appropriate non-oral platform transdermal delivery of drugs is highly recommended for the treatment of hyperuricemia. Herein, a core-shell structured microneedle patch with programmed drug release functions was designed to regulate serum uric acid (SUA) levels for prolonged hyperuricemia management. The patch was fabricated using a three-step casting method.
View Article and Find Full Text PDFCombinations of different therapeutic strategies, including chemotherapy (CT), chemodynamic therapy (CDT), and photothermal therapy (PTT), are needed to effectively address evolving drug resistance and the adverse effects of traditional cancer treatment. Herein, a camouflage composite nanoformulation (TCBG@PR), an antitumor agent (tubercidin, Tub) loaded into Cu-doped bioactive glasses (CBGs) and subsequently camouflaged by polydopamine (PDA), and red blood cell membranes (RBCm), was successfully constructed for targeted and synergetic antitumor therapies by combining CT of Tub, CDT of doped copper ions, and PTT of PDA. In addition, the TCBG@PRs composite nanoformulation was camouflaged with a red blood cell membrane (RBCm) to improve biocompatibility, longer blood retention times, and excellent cellular uptake properties.
View Article and Find Full Text PDFWith the rise of engineered living materials (ELMs) as innovative, sustainable and smart systems for diverse engineering and biological applications, global interest in advancing ELMs is on the rise. Graphene-based nanostructures can serve as effective tools to fabricate ELMs. By using graphene-based materials as building units and microorganisms as the designers of the end materials, next-generation ELMs can be engineered with the structural properties of graphene-based materials and the inherent properties of the microorganisms.
View Article and Find Full Text PDFColloids Surf B Biointerfaces
November 2023
The inadequate oxygen supply to engineered tissues has been a persistent challenge in tissue engineering and regenerative medicine. To overcome this limitation, we developed a scaffold combined with an oxygen-releasing liposomal system comprising catalase-loaded liposomes (CAT@Lip) and HO-loaded liposomes (HO@Lip). This oxygenation system has shown high cytocompatibility when they were applied to human stromal cells.
View Article and Find Full Text PDF