Publications by authors named "Amin Shamsabadipour"

Nowadays, with the advent of cutting-edge technologies in the field of biotechnology, some highly advanced medical methods are introduced to treat cancers more efficiently. In the chemotherapy processes, anti-cancer drugs can be encapsulated in a stimuli-responsive coating which is capable of being functionalized by diverse ligands to increase the biocompatibility and control drug release behavior in a targeted drug delivery system. Nanoparticles (NPs) are playing an important role as nanocarriers in chemotherapy procedures, recently, numerous novel drug delivery systems have been studied which employed diverse types of NPs with remarkable structural features like porous nanocarriers with active and extended surface areas to enhance the drug loading and delivery efficacy.

View Article and Find Full Text PDF

Curcumin (CUR) is among the most appropriate and natural-based anticancer drugs that can be applied effectively treat different classes of cancers. However, CUR suffers from a low half-life and stability in the body, which has restricted the efficacy of its delivery applications. This study is dedicated to introducing the pH-sensitive nanocomposite of chitosan (CS)/gelatin (GE)/carbon quantum dots (CQDs) as an applicable nanocarrier for enhancing CUR half-life and its delivery restrictions.

View Article and Find Full Text PDF

The promise of cell therapy has been augmented by introducing biomaterials, where intricate scaffold shapes are fabricated to accommodate the cells within. In this review, we first discuss cell encapsulation and the promising potential of biomaterials to overcome challenges associated with cell therapy, particularly cellular function and longevity. More specifically, cell therapies in the context of autoimmune disorders, neurodegenerative diseases, and cancer are reviewed from the perspectives of preclinical findings as well as available clinical data.

View Article and Find Full Text PDF

5-Fluorouracil (5-FU) is a cytotoxic drug with a low half-life. These features can cause some problems such as burst drug release and numerous side effects. In the present study, a pH-sensitive nanocomposite of polyvinylpyrrolidone (PVP)/carboxymethyl cellulose (CMC)/γ-alumina developed by using water in oil in water (W/O/W) double emulsion method.

View Article and Find Full Text PDF

Nowadays, diagnosing early-stage cancers can be vital for saving patients and dramatically decreases mortality rates. Therefore, specificity and sensitivity in the detection of cancer antigens should be elaborately ensured. Some early-stage cancers can be diagnosed via detecting the cancer antigen CA-125, such as ovarian cancer, and required treatments can be applied more efficiently.

View Article and Find Full Text PDF

5-Fluorouracil (5-FU) is amongst the most commonly used antimetabolite chemotherapeutic agents in recent decades. However, its low bioavailability, short half-life, rapid metabolism and the development of drug resistance after chemotherapy limit its therapeutic efficiency. In this study, 5-FU applications as an anti-cancer drug for treating diverse types of cancers (e.

View Article and Find Full Text PDF

Nanomaterials have demonstrated a wide range of applications and recently, novel biomedical studies are devoted to improving the functionality and effectivity of traditional and unmodified systems, either drug carriers and common scaffolds for tissue engineering or advanced hydrogels for wound healing purposes. In this regard, metal oxide nanoparticles show great potential as versatile tools in biomedical science. In particular, iron oxide nanoparticles with different shape and sizes hold outstanding physiochemical characteristics, such as high specific area and porous structure that make them idoneous nanomaterials to be used in diverse aspects of medicine and biological systems.

View Article and Find Full Text PDF

An electrochemical aptasensor has been developed to determine breast cancer biomarkers (CA 15-3). Aptamer chains were immobilized on the surface of the electrode by g-CN/FeO nanoparticles, which increased the conductivity and active surface area of the electrode. X-ray diffraction analysis (XRD), Fourier-transformed infrared spectroscopy (FTIR), and transmission electron microscopy (TEM) measurements have been carried out to characterize the nanomaterials.

View Article and Find Full Text PDF