The manuscript 'Efficient decellularization of whole porcine kidneys improves reseeded cell behavior' (Poornejad et al 2016 Biomedical Materials 11: 025003) describes our efforts to improve the process for recellularization of porcine kidneys. We obtained what we believed to be an immortalized cell line of human renal cortical tubular epithelium (RCTE) cells from the Feinberg School of Medicine, Northwestern University to conduct our reseeding experiments. The RCTE cells that were provided to us were later discovered to actually be Madin-Darby Canine Kidney (MDCK) epithelial cells.
View Article and Find Full Text PDFMany diseases and disorders are linked to exposure to endocrine disrupting chemicals (EDCs) that mimic the function of natural estrogen hormones. Here we present a Rapid Adaptable Portable In-vitro Detection biosensor platform (RAPID) for detecting chemicals that interact with the human estrogen receptor β (hERβ). This biosensor consists of an allosteric fusion protein, which is expressed using cell-free protein synthesis technology and is directly assayed by a colorimetric response.
View Article and Find Full Text PDFEmancipating sense codons toward a minimized genetic code is of significant interest to science and engineering. A key approach toward sense codon emancipation is the targeted in vitro removal of native tRNA. However, challenges remain such as the insufficient depletion of tRNA in lysate-based in vitro systems and the high cost of the purified components system (PURE).
View Article and Find Full Text PDFHere we introduce a Rapid Adaptable Portable In vitro Detection biosensor platform (RAPID) for detecting ligands that interact with nuclear hormone receptors (NHRs). The RAPID platform can be adapted for field use, allowing rapid evaluation of endocrine disrupting chemicals (EDCs) presence or absence in environmental samples, and can also be applied for drug screening. The biosensor is based on an engineered, allosterically activated fusion protein, which contains the ligand binding domain from a target NHR (human thyroid receptor β in this work).
View Article and Find Full Text PDFCell-free protein synthesis has been around for decades but it has never been close to becoming a robust tool for the production of biotherapeutic agents. In this review, we focus on how Escherichia coli-based cell-free protein synthesis can be modified in various ways to produce challenging, complex anticancer biotherapeutics. Here we report progress in extract preparation and its relation to cell-free cancer research.
View Article and Find Full Text PDFCombining patient-specific cells with the appropriate scaffold to create functional kidneys is a promising technology to provide immunocompatible kidneys for the 100,000+ patients on the organ waiting list. For proper recellularization to occur, the scaffold must possess the critical microstructure and an intact vascular network. Detergent perfusion through the vasculature of a kidney is the preferred method of decellularization; however, harsh detergents could be damaging to the microstructure of the renal tissue and may undesirably solubilize the endogenous growth and signaling factors.
View Article and Find Full Text PDFBiotherapeutics have many promising applications, such as anti-cancer treatments, immune suppression, and vaccines. However, due to their biological nature, some biotherapeutics can be challenging to rapidly express and screen for activity through traditional recombinant methods. For example, difficult-to-express proteins may be cytotoxic or form inclusion bodies during expression, increasing the time, labor, and difficulty of purification and downstream characterization.
View Article and Find Full Text PDF