Objective: Digital technologies have improved the performance of surveillance systems through early detection of outbreaks and epidemic control. The aim of this study is to introduce an outbreak detection web application called OBDETECTOR (Outbreak Detector), which as a professional web application has the ability to process weekly or daily reported data from disease surveillance systems and facilitates the early detection of disease outbreaks.
Results: OBDETECTOR generates a histogram that exhibits the trend of infection within a time range selected by the user.
Public health surveillance serves a crucial function within health systems, enabling the monitoring, early detection, and warning of infectious diseases. Recently, outbreak detection algorithms have gained significant importance across various surveillance systems, particularly in light of the COVID-19 pandemic. These algorithms are approached from both theoretical and practical perspectives.
View Article and Find Full Text PDFBackground: The rapid spread of COVID-19 virus from China to other countries and outbreaks of disease require an epidemiological analysis of the disease in the shortest time and an increased awareness of effective interventions. The purpose of this study was to estimate the COVID-19 epidemic in Iran based on the SIR model. The results of the analysis of the epidemiological data of Iran from January 22 to March 24, 2020 were investigated and prediction was made until April 15, 2020.
View Article and Find Full Text PDF