γ-Valerolactone (GVL) is a versatile chemical derived from biomass, known for its uses such as a sustainable and environmentally friendly solvent, a fuel additive, and a building block for renewable polymers and fuels. Researchers are keenly interested in the catalytic transfer hydrogenation of levulinic acid and its esters as a method to produce GVL. This approach eliminates the need for H pressure and costly metal catalysts, improving the safety, cost effectiveness and environmental sustainability of the process.
View Article and Find Full Text PDFPotassium exchanged Sn-β and Sn-USY zeolites have been tested for the transformation of various aldoses (hexoses and pentoses), exhibiting outstanding catalytic activity and selectivity toward methyl lactate. Insights into the transformation pathways using reaction intermediates-dihydroxyacetone and glycolaldehyde-as substrates revealed a very high catalytic proficiency of both zeolites in aldol and retro-aldol reactions, showcasing their ability to convert small sugars into large sugars, and vice versa. This feature makes the studied Sn-zeolites outstanding catalysts for the transformation of a wide variety of sugars into a limited range of commercially valuable alkyl lactates and derivatives.
View Article and Find Full Text PDFRecyclable PdCu single atom alloys supported on AlO were applied to the selective hydrogenation of crotonaldehyde to elucidate the minimum number of Pd atoms required to facilitate the sustainable transformation of an α,β-unsaturated carbonyl molecule. It was found that, by diluting the Pd content of the alloy, the reaction activity of Cu nanoparticles can be accelerated, enabling more time for the cascade conversion of butanal to butanol. In addition, a significant increase in the conversion rate was observed, compared to bulk Cu/AlO and Pd/AlO catalysts when normalising for Cu and Pd content, respectively.
View Article and Find Full Text PDFFast pyrolysis bio-oils possess unfavorable physicochemical properties and poor stability, in large part, owing to the presence of carboxylic acids, which hinders their use as biofuels. Catalytic esterification offers an atom- and energy-efficient route to upgrade pyrolysis bio-oils. Propyl sulfonic acid (PrSO H) silicas are active for carboxylic acid esterification but suffer mass-transport limitations for bulky substrates.
View Article and Find Full Text PDFHere we describe a simple route to creating conformal sulphated zirconia monolayers throughout an SBA-15 architecture that confers efficient acid-catalysed one-pot conversion of glucose to ethyl levulinate.
View Article and Find Full Text PDF