The collagen density is not detected in the patellar tendon (PT), posterior cruciate ligament (PCL), and anterior cruciate ligament (ACL) in clinic. We assess the technical feasibility of three-dimension multiecho fat saturated ultrashort echo time cones (3D FS-UTE-Cones) acquisitions for single- and bicomponent T2⁎ analysis of bound and free water pools in PT, PCL, and ACL in clinic. The knees of five healthy volunteers and six knee joint samples from cadavers were scanned via 3D multiecho FS-UTE-Cones acquisitions on a clinical scanner.
View Article and Find Full Text PDFUltrashort echo time magnetic resonance imaging (UTE-MRI) techniques have been increasingly used to assess cortical bone microstructure. High resolution micro computed tomography (μCT) is routinely employed for validating the MRI-based assessments. However, water protons in cortical bone may reside in micropores smaller than the detectable size ranges by μCT.
View Article and Find Full Text PDFBone stress injury (BSI) incidents have been increasing amongst athletes in recent years as a result of more intense sporting activities. Cortical bone in the tibia and fibula is one of the most common BSI sites. Nowadays, clinical magnetic resonance imaging (MRI) is the recommended technique for BSI diagnosis at an early stage.
View Article and Find Full Text PDFObjective: To utilize the 3D inversion recovery prepared ultrashort echo time with cones readout (IR-UTE-Cones) MRI technique for direct imaging of lamellar bone with comparison to the gold standard of computed tomography (CT).
Materials And Methods: CT and MRI was performed on 11 shoulder specimens and three patients. Five specimens had imaging performed before and after glenoid fracture (osteotomy).
In early stages of tendon disease, mechanical properties may become altered prior to changes in morphological anatomy. Ultrashort echo time (UTE) magnetic resonance imaging (MRI) can be used to directly detect signal from tissues with very short T2 values, including unique viscoelastic tissues such as tendons. The purpose of this study was to use UTE sequences to measure T2, T1 and magnetization transfer ratio (MTR) variations of tendon samples under static tensile loads.
View Article and Find Full Text PDFPurpose: We present three-dimensional adiabatic inversion recovery prepared ultrashort echo time Cones (3D IR-UTE-Cones) imaging of cortical bone in the hip of healthy volunteers using a clinical 3T scanner.
Methods: A 3D IR-UTE-Cones sequence, based on a short pulse excitation followed by a 3D Cones trajectory, with a nominal TE of 32μs, was employed for high contrast morphological imaging of cortical bone in the hip of heathy volunteers. Signals from soft tissues such as muscle and marrow fat were suppressed via adiabatic inversion and signal nulling.
Ultrashort TE (UTE) sequences have the capability to image tissues with very short T2s that typically appear as low signal in clinical sequences. UTE sequences can also be used in multi-echo acquisitions which allow assessment of the T2s of these tissues. Here we study the accuracy of such T2 measurements when combined with fat saturation (FS).
View Article and Find Full Text PDFBackground: The gold standard for mapping nerve fiber orientation in white matter of the human brain is histological analysis through biopsy. Such mappings are a crucial step in validating non-invasive techniques for assessing nerve fiber orientation in the human brain by using diffusion MRI. However, the manual extraction of nerve fiber directions of histological slices is tedious, time consuming, and prone to human error.
View Article and Find Full Text PDF