Publications by authors named "Amin Morteza-Najarian"

The synthesis of highly monodispersed InAs colloidal quantum dots (CQDs) is needed in InAs CQD-based optoelectronic devices. Because of the complexities of working with arsenic precursors such as tris-trimethylsilyl arsine ((TMSi)As) and tris-trimethylgermyl arsine ((TMGe)As), several attempts have been made to identify new candidates for synthesis; yet, to date, only the aforementioned two highly reactive precursors have led to excellent photodetector device performance. We begin the present study by investigating the mechanism, finding that the use of the cosurfactant dioctylamine plays a crucial role in producing monodispersed InAs populations.

View Article and Find Full Text PDF

Two-dimensional (2D) hybrid perovskites harness the chemical and structural versatility of organic compounds. Here, we explore 2D perovskites that incorporate both a first organic component, a primary ammonium cation, and a second neutral organic module. Through the experimental examination of 42 organic pairs with a range of functional groups and organic backbones, we identify five crystallization scenarios that occur upon mixing.

View Article and Find Full Text PDF

III-V colloidal quantum dots (CQDs) are of interest in infrared photodetection, and recent developments in CQDs synthesis and surface engineering have improved performance. Here this work investigates photodetector stability, finding that the diffusion of zinc ions from charge transport layers (CTLs) into the CQDs active layer increases trap density therein, leading to rapid and irreversible performance loss during operation. In an effort to prevent this, this work introduces organic blocking layers between the CQDs and ZnO layers; but these negatively impact device performance.

View Article and Find Full Text PDF

Heavy-metal-free III-V colloidal quantum dots (CQDs) show promise in optoelectronics: Recent advancements in the synthesis of large-diameter indium arsenide (InAs) CQDs provide access to short-wave infrared (IR) wavelengths for three-dimensional ranging and imaging. In early studies, however, we were unable to achieve a rectifying photodiode using CQDs and molybdenum oxide/polymer hole transport layers, as the shallow valence bandedge (5.0 eV) was misaligned with the ionization potentials of the widely used transport layers.

View Article and Find Full Text PDF

Perovskites with low ionic radii metal centres (for example, Ge perovskites) experience both geometrical constraints and a gain in electronic energy through distortion; for these reasons, synthetic attempts do not lead to octahedral [GeI] perovskites, but rather, these crystallize into polar non-perovskite structures. Here, inspired by the principles of supramolecular synthons, we report the assembly of an organic scaffold within perovskite structures with the goal of influencing the geometric arrangement and electronic configuration of the crystal, resulting in the suppression of the lone pair expression of Ge and templating the symmetric octahedra. We find that, to produce extended homomeric non-covalent bonding, the organic motif needs to possess self-complementary properties implemented using distinct donor and acceptor sites.

View Article and Find Full Text PDF

III-V colloidal quantum dots (CQDs) are promising materials for optoelectronic applications, for they avoid heavy metals while achieving absorption spanning the visible to the infrared (IR). However, the covalent nature of III-V CQDs requires the development of new passivation strategies to fabricate conductive CQD solids for optoelectronics: this work shows herein that ligand exchanges, previously developed in II-VI and IV-VI quantum dots and employing a single ligand, do not fully passivate CQDs, and that this curtails device efficiency. Guided by density functional theory (DFT) simulations, this work develops a co-passivation strategy to fabricate indium arsenide CQD photodetectors, an approach that employs the combination of X-type methyl ammonium acetate (MaAc) and Z-type ligands InBr .

View Article and Find Full Text PDF

Electro-optic (EO) modulators provide electrical-to-optical signal conversion relevant to optical communications. Barium titanate (BaTiO ) is a promising material system for EO modulation in light of its optical ultrafast nonlinearity, low optical loss, and high refractive index. To enhance further its spontaneous polarization, BaTiO can be doped at the Ba and Ti sites; however, doping is often accompanied by ion migration, which diminishes EO performance.

View Article and Find Full Text PDF

Colloidal quantum dots (CQDs) are promising materials for infrared (IR) light detection due to their tunable bandgap and their solution processing; however, to date, the time response of CQD IR photodiodes is inferior to that provided by Si and InGaAs. It is reasoned that the high permittivity of II-VI CQDs leads to slow charge extraction due to screening and capacitance, whereas III-Vs-if their surface chemistry can be mastered-offer a low permittivity and thus increase potential for high-speed operation. In initial studies, it is found that the covalent character in indium arsenide (InAs) leads to imbalanced charge transport, the result of unpassivated surfaces, and uncontrolled heavy doping.

View Article and Find Full Text PDF

Charge carrier transport in colloidal quantum dot (CQD) solids is strongly influenced by coupling among CQDs. The shape of as-synthesized CQDs results in random orientational relationships among facets in CQD solids, and this limits the CQD coupling strength and the resultant performance of optoelectronic devices. Here, colloidal-phase reconstruction of CQD surfaces, which improves facet alignment in CQD solids, is reported.

View Article and Find Full Text PDF

Electro-optic (EO) modulation is of interest to impart information onto an optical carrier. Inorganic crystals-most notably LiNbO and BaTiO-exhibit EO modulation and good stability, but are difficult to integrate with silicon photonic technology. Solution-processed organic EO materials are readily integrated but suffer from thermal degradation at the temperatures required in operating conditions for accelerated reliability studies.

View Article and Find Full Text PDF

Electrical-to-optical signal conversion is widely employed in information technology and is implemented using on-chip optical modulators. State-of-the-art modulator technologies are incompatible with silicon manufacturing techniques: inorganic nonlinear crystals such as LiNbO are integrated with silicon photonic chips only using complex approaches, and hybrid silicon-LiNbO optical modulators show either low bandwidth or high operating voltage. Organic perovskites are solution-processed materials readily integrated with silicon photonics; and organic molecules embedded within the perovskite scaffold allow in principle for high polarizability.

View Article and Find Full Text PDF

In further advancing display technologies, especially for improved blue emitters, to engineer the bandgap of promising semiconductors such as hybrid perovskites is important. Present-day methods for tuning the bandgaps of perovskites, such as the incorporation of mixed halide anions, suffer drawbacks such as phase separation and difficulty in synthesis. Here we report a new 2D lead iodide perovskite that emits in the blue spectral region.

View Article and Find Full Text PDF

Surface ligands enable control over the dispersibility of colloidal quantum dots (CQDs) via steric and electrostatic stabilization. Today's device-grade CQD inks have consistently relied on highly polar solvents: this enables facile single-step deposition of multi-hundred-nanometer-thick CQD films; but it prevents the realization of CQD film stacks made up of CQDs having different compositions, since polar solvents redisperse underlying films. Here we introduce aromatic ligands to achieve process-orthogonal CQD inks, and enable thereby multifunctional multilayer CQD solids.

View Article and Find Full Text PDF

We present a combined experimental and theoretical study of photoinduced current in molecular junctions consisting of monolayers of nitroazobenzene oligomers chemisorbed on carbon surfaces and illuminated by ultraviolet-visible light through a transparent electrode. Experimentally observed dependence of the photocurrent on light frequency, temperature, and monolayer thickness is analyzed within first-principles simulations employing the Hubbard nonequilibrium Green's function diagrammatic technique. We reproduce qualitatively correct behavior and discuss mechanisms leading to the characteristic behavior of dark and photoinduced currents in response to changes in bias, frequency of radiation, temperature, and thickness of molecular layer.

View Article and Find Full Text PDF

Molecular electronic junctions consisting of nitroazobenzene oligomers covalently bonded to a conducting carbon surface using an established "all-carbon" device design were illuminated with UV-vis light through a partially transparent top electrode. Monitoring junction conductance with a DC bias imposed permitted observation of photocurrents while varying the incident wavelength, light intensity, molecular layer thickness, and temperature. The photocurrent spectrum tracked the in situ absorption spectrum of nitroazobenzene, increased linearly with light intensity, and depended exponentially on applied bias.

View Article and Find Full Text PDF

We report, for the first time, the three dimensional reconstruction (3D) of a transistor from a microprocessor chip and roughness of molecular electronic junction obtained by electron tomography with Hole Free Phase Plate (HFPP) imaging. The HFPP appears to enhance contrast between inorganic materials and also increase the visibility of interfaces between different materials. We demonstrate that the degree of enhancement varies depending on material and thickness of the samples using experimental and simulation data.

View Article and Find Full Text PDF

Applications of conducting carbon materials for highly efficient electrochemical energy devices require a greater fundamental understanding of heterogeneous electron-transfer (ET) mechanisms. This task, however, is highly challenging experimentally, because an adsorbing carbon surface may easily conceal its intrinsic reactivity through adventitious contamination. Herein, we employ nanoscale scanning electrochemical microscopy (SECM) and cyclic voltammetry to gain new insights into the interplay between heterogeneous ET and adsorption of a Co(III)/Co(II)-complex redox couple at the contamination-free surface of electron-beam-deposited carbon (eC).

View Article and Find Full Text PDF

Photocurrents generated by illumination of carbon-based molecular junctions were investigated as diagnostics of how molecular structure and orbital energies control electronic behavior. Oligomers of eight aromatic molecules covalently bonded to an electron-beam deposited carbon surface were formed by electrochemical reduction of diazonium reagents, with layer thicknesses in the range of 5-12 nm. Illumination through either the top or bottom partially transparent electrodes produced both an open circuit potential (OCP) and a photocurrent (PC), and the polarity and spectrum of the photocurrent depended directly on the relative positions of the frontier orbitals and the electrode Fermi level (E).

View Article and Find Full Text PDF

Electron-beam (e-beam) deposition of carbon on a gold substrate yields a very flat (0.43 nm of root-mean-square roughness), amorphous carbon film consisting of a mixture of sp- and sp-hybridized carbon with sufficient conductivity to avoid ohmic potential error. E-beam carbon (eC) has attractive properties for conventional electrochemistry, including low background current and sufficient transparency for optical spectroscopy.

View Article and Find Full Text PDF

Carbon-based molecular junctions consisting of aromatic oligomers between conducting sp hybridized carbon electrodes exhibit structure-dependent current densities (J) when the molecular layer thickness (d) exceeds ∼5 nm. All four of the molecular structures examined exhibit an unusual, nonlinear ln J vs bias voltage (V) dependence which is not expected for conventional coherent tunneling or activated hopping mechanisms. All molecules exhibit a weak temperature dependence, with J increasing typically by a factor of 2 over the range of 200-440 K.

View Article and Find Full Text PDF

Large area molecular junctions were fabricated on electron-beam deposited carbon (eC) surfaces with molecular layers in the range of 2-5.5 nm between conducting, amorphous carbon contacts. Incorporating eC as an interconnect between Au and the molecular layer improves substrate roughness, prevents electromigration and uses well-known electrochemistry to form a covalent C-C bond to the molecular layer.

View Article and Find Full Text PDF

Carbon has always been an important electrode material for electrochemical applications, and the relatively recent development of carbon nanotubes and graphene as electrodes has significantly increased interest in the field. Carbon solids, both sp(2) and sp(3) hybridized, are unique in their combination of electronic conductivity and the ability to form strong bonds to a variety of other elements and molecules. The Faraday Discussion included broad concepts and applications of carbon materials in electrochemistry, including analysis, energy storage, materials science, and solid-state electronics.

View Article and Find Full Text PDF

There are numerous published reports about dispersive liquid phase microextraction of the wide range of substances, however, till now no broadly accepted systematic and purpose oriented selection of extraction solvent has been proposed. Most works deal with the optimization of available solvents without adequate pre-consideration of properness. In this study, it is tried to compare the performances of low- and high-density solvents at the same conditions by means of novel type of extraction vessel with head and bottom conical shape.

View Article and Find Full Text PDF

This study proposes the dual electromembrane extraction followed by high performance liquid chromatography for selective separation-preconcentration of Cr(VI) and Cr(III) in different environmental samples. The method was based on the electrokinetic migration of chromium species toward the electrodes with opposite charge into the two different hollow fibers. The extractant was then complexed with ammonium pyrrolidinedithiocarbamate for HPLC analysis.

View Article and Find Full Text PDF

A two-phase electromembrane extraction (EME) was developed and directly coupled with gas chromatography mass spectrometry (GC-MS) analysis. The proposed method was successfully applied to the simultaneous determination of imipramine, desipramine, citalopram and sertraline. The model compounds were extracted from neutral aqueous sample solutions into the organic phase filled in the lumen of the hollow fiber.

View Article and Find Full Text PDF

Synopsis of recent research by authors named "Amin Morteza-Najarian"

  • - Amin Morteza-Najarian's recent research emphasizes the synthesis and engineering of colloidal quantum dots (CQDs), particularly focusing on InAs and their application in optoelectronic devices, addressing challenges in stability and performance enhancement.
  • - His studies investigate novel materials such as 2D hybrid perovskites and explore how the integration of organic components can influence crystallization and improve stability in devices, as well as the development of new strategies for effective passivation of III-V CQDs.
  • - Morteza-Najarian's work also includes advancements in electro-optic materials, specifically the enhancement of barium titanate (BaTiO) nanocrystals through efficient doping, which aims to improve their application in optical communication technologies.