Publications by authors named "Amin Mantrach"

This work develops a generic framework, called the bag-of-paths (BoP), for link and network data analysis. The central idea is to assign a probability distribution on the set of all paths in a network. More precisely, a Gibbs-Boltzmann distribution is defined over a bag of paths in a network, that is, on a representation that considers all paths independently.

View Article and Find Full Text PDF

This work introduces a novel nonparametric density index defined on graphs, the Sum-over-Forests (SoF) density index. It is based on a clear and intuitive idea: high-density regions in a graph are characterized by the fact that they contain a large amount of low-cost trees with high outdegrees while low-density regions contain few ones. Therefore, a Boltzmann probability distribution on the countable set of forests in the graph is defined so that large (high-cost) forests occur with a low probability while short (low-cost) forests occur with a high probability.

View Article and Find Full Text PDF

This work introduces a link-based covariance measure between the nodes of a weighted directed graph, where a cost is associated with each arc. To this end, a probability distribution on the (usually infinite) countable set of paths through the graph is defined by minimizing the total expected cost between all pairs of nodes while fixing the total relative entropy spread in the graph. This results in a Boltzmann distribution on the set of paths such that long (high-cost) paths occur with a low probability while short (low-cost) paths occur with a high probability.

View Article and Find Full Text PDF