An accurate and fast method is presented for the analysis of scattering of electromagnetic waves from an array of time-modulated graphene ribbons. We derive a time-domain integral equation for induced surface currents under subwavelength approximation. Using the method of harmonic balance, this equation is solved for a sinusoidal modulation.
View Article and Find Full Text PDFIn this work, a theorem is proved stating that in various types of waveguides with mirror reflection symmetries, the electromagnetic duality correspondence between eigenmodes of complementary structures induces counterpropagating spin-polarized states. The mirror reflection symmetries may be preserved around one or more arbitrary planes. Pseudospin-polarized waveguides supporting one-way states manifest robustness.
View Article and Find Full Text PDFThe optical implementation of mathematical spatial operators is a critical step toward achieving practical high-speed, low-energy analog optical processors. In recent years, it has been shown that using fractional derivatives in many engineering and science applications leads to more accurate results. In the case of optical spatial mathematical operators, the derivatives of the first and second orders have been investigated.
View Article and Find Full Text PDFOpt Express
September 2022
In a recently published article by Backer [Opt. Express27(21), 30308 (2019).10.
View Article and Find Full Text PDFDue to the wide range of applications of metal/graphene-based plasmonic metasurfaces (sensors, absorbers, polarizers), it has become essential to provide an analytical method for modeling these structures. An analytical solution simplified into a circuit model, in addition to greatly reducing the simulation time, can become an essential tool for designing and predicting the behaviors of these structures. This paper presents a high-precision equivalent circuit model to study these structures in one-dimensional and two-dimensional periodic arrays.
View Article and Find Full Text PDFIn this paper, we propose a plasmonic structure based on Kretschmann configuration capable of performing various computational tasks, i.e. two dimensional isotropic differentiation, gradient and divergence computation.
View Article and Find Full Text PDFOptical computing is highly desired as a potential strategy for circumventing the performance limitations of semiconductor-based electronic devices and circuits. Optical logic gates are considered as fundamental building blocks for optical computation and they enable logic functions to be performed extremely quickly without the generation of heat and crosstalk. Here, we discuss the design of a multi-functional optical logic gate based on an on-chip diffractive optical neural network that can perform AND, NOT and OR logic operations at the wavelength of 1.
View Article and Find Full Text PDFThe recently proposed concept of metagrating enables wavefront manipulation of electromagnetic (EM) waves with unitary efficiency and relatively simple fabrication requirements. Herein, two-dimensional (2D) metagratings composed of a 2D periodic array of rectangular holes in a metallic medium are proposed for diffraction pattern control. We first present an analytical method for diffraction analysis of 2D compound metallic metagrating (a periodic metallic structure with more than one rectangular hole in each period).
View Article and Find Full Text PDFGraphene-based gratings and metagratings have attracted great interest in the last few years because they could realize various multi-functional beam manipulation, such as beam splitting, focusing, and anomalous reflection in the terahertz (THz) regime. However, most of graphene-based metagratings are designed through numerical simulations, which are very time-consuming. In this paper, an accurate analytical method is proposed for diffraction analysis of a perfect electric conductor (PEC)-backed array of graphene ribbons.
View Article and Find Full Text PDFAn integrated photonic neural network is proposed based on on-chip cascaded one-dimensional (1D) metasurfaces. High-contrast transmitarray metasurfaces, termed as metalines in this paper, are defined sequentially in the silicon-on-insulator substrate with a distance much larger than the operation wavelength. Matrix-vector multiplications can be accomplished in parallel and with low energy consumption due to intrinsic parallelism and low-loss of silicon metalines.
View Article and Find Full Text PDFIn this paper, a very simple periodic ridge on a symmetric slab waveguide is used for implementing an on-chip CMOS-compatible second-order spatial differentiator. The reflection and transmission coefficients of this structure show that the second derivative is performed in the transmission when the optical beam normally incidents on the periodic ridge. Simulations confirm that the reason behind the second-order spatial differentiation of the incoming beam is the excitation of the guided mode of the periodic ridge.
View Article and Find Full Text PDFIn this paper, we analyze a cylindrical waveguide consisting of two layers of bianisotropic material with anti-symmetric magnetoelectric coupling tensors. The analysis is carried out in terms of pseudo-electric and pseudo-magnetic fields which satisfy Maxwells' equations with gyrotropic permittivity and permeability tensors. We show that the rotationally symmetric modes of the waveguide are unidirectional with transverse pseudo-electric and transverse pseudo-magnetic modes propagating in opposite directions.
View Article and Find Full Text PDFMetagrating is a new concept for wavefront manipulation that, unlike phase gradient metasurfaces, does not suffer from low efficiency and also has a less complicated fabrication process. In this paper, a compound metallic grating (a periodic metallic structure with more than one slit in each period) is proposed for anomalous reflection. We propose an analytical method for analyzing the electromagnetic response of this grating.
View Article and Find Full Text PDFEfficient excitation of surface wave (SW) remains one of the most challenging considerations in the photonics and plasmonics areas. Inspired by recent investigations of metasurfaces, we propose a hybrid metal-graphene transmitarray converting incident propagating wave (PW) to SW, as a solution for SW excitations-a meta-coupler. The structure comprises ultra-thin four-layer transparent metasurfaces in which H-shaped etched metal films together with graphene patches are employed, and also all four layers are identical.
View Article and Find Full Text PDFIn this paper, the relation between gain and resolution of an ideal analog optical differentiator in two different cases and their fundamental limits are investigated. Based on this relation, a figure of merit for comparison of the designed differentiators in recent papers is proposed. The differentiators are optimized using this figure of merit, and they are compared with each other to determine the best one.
View Article and Find Full Text PDFA sheet of graphene under magnetic bias attains anisotropic surface conductivity, opening the door for realizing compact devices such as Faraday rotators, isolators and circulators. In this paper, an accurate and analytical method is proposed for a periodic array of graphene ribbons under magnetic bias. The method is based on integral equations governing the induced surface currents on the coplanar array of graphene ribbons.
View Article and Find Full Text PDFFabrication, characterization, and analysis of an ultrabroadband lithography-free absorber is presented. An over 94% average absorption is experimentally achieved in the wavelength range of 450-1400 nm. This ultrabroadband absorption is obtained by a simple annealed trilayer metal-insulator-metal (MIM) configuration.
View Article and Find Full Text PDFIn this paper, we propose a graphene-covered subwavelength metallic grating where the Fermi level of graphene is sinusoidally modulated as a leaky-wave antenna at terahertz frequencies. This structure can convert spoof surface plasmon guided waves to free-space radiation due to the tunability of graphene. Analysis and design of the proposed leaky-wave antenna are discussed based on sinusoidally modulated surface impedance.
View Article and Find Full Text PDFThe possibility of real-time tuning of optical devices has attracted a lot of interest over the last decade. At the same time, coming up with simple lithography-free structures has always been a challenge in the design of large-area compatible devices. In this work, we present the concept and the sample design of an electrically tunable, lithography-free, ultra-thin transmission-mode color filter, the spectrum of which continuously covers the whole visible region.
View Article and Find Full Text PDFAchieving broadband absorption has been a topic of intensive research over the last decade. However, the costly and time consuming stage of lithography has always been a barrier for the large-area and mass production of absorbers. In this work, we designed, fabricated, and characterized a lithography-free, large-area compatible, omni-directional, ultra-broadband absorber that consists of the simplest geometrical configuration for absorbers: Metal-Insulator-Metal (MIM).
View Article and Find Full Text PDFWe show that a plasmonic semiconductor substrate can support highly confined surface plasmons when it is covered by a graphene layer. This occurs when the imaginary part of graphene conductivity and real part of the effective permittivity of the surrounding medium become simultaneously negative. Full-wave electromagnetic simulations demonstrate the occurrence of negative refraction and two-dimensional lensing at the interface separating regions supporting conventional right-handed graphene plasmons and left-handed surface plasmon polaritons.
View Article and Find Full Text PDFIn this paper, a closed-form two-dimensional reconstruction technique for hybrid frequency and mechanical scanning millimeter-wave (MMW) imaging systems is proposed. Although being commercially implemented in many imaging systems as a low-cost real-time solution, the results of frequency scanning systems have been reconstructed numerically or have been reported as the captured raw data with no clear details. Furthermore, this paper proposes a new framework to utilize the captured data of different frequencies for three-dimensional (3D) reconstruction based on novel proposed closed-form relations.
View Article and Find Full Text PDFWe propose a bidirectional terahertz (THz) spectrum splitter using a practically simple metamaterial structure consisting of rectangular grooves covered by graphene. Thanks to the graphene optoelectronic tunability and by adjusting the grooves width, this structure provides nearly 2π phase shift. At the same time, the reflection efficiency is acceptable throughout the phase shifts.
View Article and Find Full Text PDFIn this contribution a new approach to perform spatial integration is presented using a dielectric slab. Our approach is indeed based on the fact that the transmission coefficient of a simple dielectric slab at its mode excitation angle matches the Fourier-Green's function of first-order integration. Inspired by the mentioned dielectric-based integrator, we further demonstrate its graphene-based counterpart.
View Article and Find Full Text PDFOptical computing has emerged as a promising candidate for real-time and parallel continuous data processing. Motivated by recent progresses in metamaterial-based analog computing [Science343, 160 (2014)SCIEAS0036-807510.1126/science.
View Article and Find Full Text PDF