The Germinal Center Kinase III (GckIII) pathway is a Hippo-like kinase module defined by sequential activation of Ste20 kinases Thousand and One (Tao) and GckIII, followed by nuclear dbf2-related (NDR) kinase Tricornered (Trc). We previously uncovered a role for the GckIII pathway in Drosophila melanogaster tracheal (respiratory) tube morphology. The trachea form a network of branched epithelial tubes essential for oxygen transport, and are structurally analogous to branched tubular organs in vertebrates, such as the vascular system.
View Article and Find Full Text PDFLarval terminal cells of the Drosophila tracheal system generate extensive branched tubes, requiring a huge increase in apical membrane. We discovered that terminal cells compromised for apical membrane expansion - mTOR-vATPase axis and apical polarity mutants - were invaded by the neighboring stalk cell. The invading cell grows and branches, replacing the original single intercellular junction between stalk and terminal cell with multiple intercellular junctions.
View Article and Find Full Text PDFEmbryos deficient for an essential gene may show complex phenotypes that reflect pleiotropic functions and non-cell-autonomous requirements for the encoded protein. The generation of mosaic animals, where most cells are wild type, but a few cells are mutant, is a powerful tool permitting the detailed analysis of the cell autonomous function of a gene, in a particular cell type, at cellular and subcellular resolutions. Here we apply this method to the analysis of the Cerebral Cavernous Malformations 3 (CCM3) pathway in Drosophila.
View Article and Find Full Text PDFThe terminal cells of the larval Drosophila tracheal system extend dozens of branched cellular processes, most of which become hollow intracellular tubes that support gas exchange with internal tissues. Previously, we undertook a forward genetic mosaic screen to uncover the pathways regulating terminal cell size, morphogenesis, and the generation and maintenance of new intracellular tubes. Our initial work identified several mutations affecting terminal cell size and branch number, and suggested that branch complexity and cell size are typically coupled but could be genetically separated.
View Article and Find Full Text PDFHippo-like pathways are ancient signaling modules first identified in yeasts. The best-defined metazoan module forms the core of the Hippo pathway, which regulates organ size and cell fate. Hippo-like kinase modules consist of a Sterile 20-like kinase, an NDR kinase, and non-catalytic protein scaffolds.
View Article and Find Full Text PDFDuring sprouting angiogenesis in the vertebrate vascular system, and primary branching in the Drosophila tracheal system, specialized tip cells direct branch outgrowth and network formation. When tip cells lumenize, they form subcellular (seamless) tubes. How these seamless tubes are made, shaped and maintained remains poorly understood.
View Article and Find Full Text PDFTubes are essential for nutrient transport and gas exchange in multicellular eukaryotes, but how connections between different tube types are maintained over time is unknown. In the Drosophila tracheal system, mutations in oak gall (okg) and conjoined (cnj) confer identical defects, including late onset blockage near the terminal cell-stalk cell junction and the ectopic extension of autocellular, seamed tubes into the terminal cell. We determined that okg and cnj encode the E and G subunits of the vacuolar ATPase (vATPase) and showed that both the V0 and V1 domains are required for terminal cell morphogenesis.
View Article and Find Full Text PDFMost tubes have seams (intercellular or autocellular junctions that seal membranes together into a tube), but "seamless" tubes also exist. In Drosophila, stellate-shaped tracheal terminal cells make seamless tubes, with single branches running through each of dozens of cellular extensions. We find that mutations in braided impair terminal cell branching and cause formation of seamless tube cysts.
View Article and Find Full Text PDFTubes of differing cellular architecture connect into networks. In the Drosophila tracheal system, two tube types connect within single cells (terminal cells); however, the genes that mediate this interconnection are unknown. Here we characterize two genes that are essential for this process: lotus, required for maintaining a connection between the tubes, and wheezy, required to prevent local tube dilation.
View Article and Find Full Text PDFMost organs are composed of tubes of differing cellular architectures, including intracellular 'seamless' tubes. Two studies examining the morphogenesis of the seamless tubes formed by the excretory canal cell in Caenorhabditis elegans reveal a previously unappreciated role for osmoregulation of tubulogenesis: hyperosmotic shock recruits canalicular vesicles to the lumenal membrane to promote seamless tube growth.
View Article and Find Full Text PDFSeamless tubes form intracellularly without cell-cell or autocellular junctions. Such tubes have been described across phyla, but remain mysterious despite their simple architecture. In Drosophila, seamless tubes are found within tracheal terminal cells, which have dozens of branched protrusions extending hundreds of micrometres.
View Article and Find Full Text PDFThe hexosamine biosynthetic pathway, whose end product is UDP-N acetylglucosamine (UDP-GlcNAc), lies at the base of cellular glycosylation pathways, including glycosylation of lipids, formation of heparin sulfated proteoglycans, and N- and O-linked glycosylation of proteins. Forward genetic studies in Drosophila have revealed that mutations in genes encoding different enzymes of the hexosamine biosynthetic pathway result in reduction of UDP-GlcNAc to different extents, with a consequent disruption of distinct glycosylation pathways and developmental processes. A maternal and zygotic loss-of-function screen has identified mutations in nesthocker (nst), which encodes an enzyme in the hexosamine biosynthetic pathway.
View Article and Find Full Text PDFMany signaling proteins and transcription factors that induce and pattern organs have been identified, but relatively few of the downstream effectors that execute morphogenesis programs. Because such morphogenesis genes may function in many organs and developmental processes, mutations in them are expected to be pleiotropic and hence ignored or discarded in most standard genetic screens. Here we describe a systematic screen designed to identify all Drosophila third chromosome genes (∼40% of the genome) that function in development of the tracheal system, a tubular respiratory organ that provides a paradigm for branching morphogenesis.
View Article and Find Full Text PDFThe Drosophila respiratory organ (tracheal system) consists of epithelial tubes, the morphogenesis of which is controlled by distinct sets of signaling pathways and transcription factors. The downstream events controlling tube formation and shape are only now beginning to be identified. Here we review recent insight into the communication between neighboring tracheal cells, their interactions with the surrounding matrix, and the impact of these processes on tube morphogenesis.
View Article and Find Full Text PDFMany organs are composed of tubular networks that arise by branching morphogenesis in which cells bud from an epithelium and organize into a tube. Fibroblast growth factors (FGFs) and other signalling molecules have been shown to guide branch budding and outgrowth, but it is not known how epithelial cells coordinate their movements and morphogenesis. Here we use genetic mosaic analysis in Drosophila melanogaster to show that there are two functionally distinct classes of cells in budding tracheal branches: cells at the tip that respond directly to Branchless FGF and lead branch outgrowth, and trailing cells that receive a secondary signal to follow the lead cells and form a tube.
View Article and Find Full Text PDFEpithelial tubes that compose many organs are typically long lasting, except under specific developmental and physiological conditions when network remodeling occurs. Although there has been progress elucidating mechanisms of tube formation, little is known of the mechanisms that maintain tubes and destabilize them during network remodeling. Here, we describe Drosophila tendrils mutations that compromise maintenance of tracheal terminal branches, fine gauge tubes formed by tracheal terminal cells that ramify on and adhere tightly to tissues in order to supply them with oxygen.
View Article and Find Full Text PDFMany organs including the mammalian lung and vascular system consist of branched tubular networks that transport essential gases or fluids, but the genetic programs that control the development of these complex three-dimensional structures are not well understood. The Drosophila melanogaster tracheal (respiratory) system is a network of interconnected epithelial tubes that transports oxygen and other gases in the body and provides a paradigm of branching morphogenesis. It develops by sequential sprouting of primary, secondary, and terminal branches from an epithelial sac of approximately 80 cells in each body segment of the embryo.
View Article and Find Full Text PDFIn Drosophila, mutations in double-strand DNA break (DSB) repair enzymes, such as spn-B, activate a meiotic checkpoint leading to dorsal-ventral patterning defects in the egg and an abnormal appearance of the oocyte nucleus. Mutations in spn-D cause an array of ovarian phenotypes similar to spn-B. We have cloned the spn-D locus and found that it encodes a protein of 271 amino acids that shows significant homology to the human RAD51C protein.
View Article and Find Full Text PDF