Publications by authors named "Amin Danandeh Hesar"

Model-based Bayesian approaches have been widely applied in Electrocardiogram (ECG) signal processing, where their performances heavily rely on the accurate selection of model parameters, particularly the state and measurement noise covariance matrices. In this study, we introduce an adaptive augmented cubature Kalman filter/smoother (CKF/CKS) for ECG processing, which updates the noise covariance matrices at each time step to accommodate diverse noise types and input signal-to-noise ratios (SNRs). Additionally, we incorporate the dynamic time warping technique to enhance the filter's efficiency in the presence of heart rate variability.

View Article and Find Full Text PDF