Publications by authors named "Amin Ajdari"

The formation of localized periodic structures in the deformation of elastic shells is well documented and is a familiar first stage in the crushing of a spherical shell such as a ping-pong ball. While spherical shells manifest such periodic structures as polygons, we present a new instability that is observed in the indentation of a highly ellipsoidal shell by a horizontal plate. Above a critical indentation depth, the plate loses contact with the shell in a series of well-defined "blisters" along the long axis of the ellipsoid.

View Article and Find Full Text PDF

Thin shells are found in nature at scales ranging from viruses to hens' eggs; the stiffness of such shells is essential for their function. We present the results of numerical simulations and theoretical analyses for the indentation of ellipsoidal and cylindrical elastic shells, considering both pressurized and unpressurized shells. We provide a theoretical foundation for the experimental findings of Lazarus et al.

View Article and Find Full Text PDF

We study the formation of localized structures formed by the point loading of an internally pressurized elastic shell. While unpressurized shells (such as a ping-pong ball) buckle into polygonal structures, we show that pressurized shells are subject to a wrinkling instability. We study wrinkling in depth, presenting scaling laws for the critical indentation at which wrinkling occurs and the number of wrinkles formed in terms of the internal pressurization and material properties of the shell.

View Article and Find Full Text PDF

Pressurized elastic capsules arise at scales ranging from the 10 m diameter pressure vessels used to store propane at oil refineries to the microscopic polymeric capsules that may be used in drug delivery. Nature also makes extensive use of pressurized elastic capsules: plant cells, bacteria and fungi have stiff walls, which are subject to an internal turgor pressure. Here, we present theoretical, numerical and experimental investigations of the indentation of a linearly elastic shell subject to a constant internal pressure.

View Article and Find Full Text PDF

It is well known that thrombus can be formed at stagnation regions in blood flow. However, studies of thrombus formation have typically focused on steady state flow. We hypothesize that pulsating flow may reduce persistent stagnation at the sites of low shear stress by decreasing exposure time.

View Article and Find Full Text PDF

Implantable devices in direct contact with flowing blood are associated with the risk of thromboembolic events. This study addresses the need to improve our understanding of the thrombosis mechanism and to identify areas on artificial surfaces susceptible to thrombus deposition. Thrombus deposits on artificial blood step transitions are quantified experimentally and compared with shear stress and shear rate distributions using computational fluid dynamics (CFD) models.

View Article and Find Full Text PDF