Publications by authors named "Amin Abdolvand"

Laser-induced surface structuring is a promising method to suppress electron mulitpacting in the vacuum pipes of particle accelerators. Electrons are scattered inside the rough surface structure, resulting in a low Secondary Electron Yield (SEY) of the material. However, laser processing of internal pipe surfaces with a large aspect ratio is technologically challenging in terms of laser beam guidance and focusing.

View Article and Find Full Text PDF

One-step direct patterning of high definition conductive tracks in textiles is realized through laser direct writing in combination with a silver organometallic ink developed in-house. Photoreduction, nano-crystallization, and sintering are accomplished in one pass under the irradiation of a CW green laser light (λ = 532 nm) at moderate intensities (I ≥ 95 mW/mm). By tailoring the surface tension and viscosity of the ink, high-definition conductive tracks are formed in weft-knitted polyester-Spandex composite fabrics, well-following the laser's profile with negligible coffee stain effect.

View Article and Find Full Text PDF

Explosives are powerful destructive weapons used by criminals and terrorists across the globe and their use within military installation sites poses serious environmental health problems. Existing colorimetric sensors for triacetone triperoxide (TATP) relies on detecting its hydrolysed HO form. However, such detection strategy limits the practicability for on-site TATP sensing.

View Article and Find Full Text PDF

We present studies of the formation of silver nanoparticles (NPs) in silver-sodium ion-exchanged glasses by a combination of thermal poling and nanosecond pulsed laser irradiation at 355 nm. In poling, silver ions drift deeper into the glass and become separated from the glass surface by a poled layer depleted in cations. Performed measurements have indicated poling-induced broadening of silver ions depth distribution.

View Article and Find Full Text PDF

The International Agency for Research cancer (IARC) has classified nitrite in Group 2A of probable carcinogens to human. Herein, we report on the rapid and selective colorimetric detection of nitrite using a chemically modified gold nanoparticle (AuNP)-cerium oxide (CeO) NP-anchored graphene oxide (GO) hybrid nanozyme in a catalytic colorimetric assay where nitrite acts as the main oxidant/target analyte and 3,3',5,5'-tetramethylbenzidine (TMB) as the substrate. CeO NPs and GO were synthesized separately and incorporated in-situ, in a synthetic solution involving the chemical reduction of Au salt to AuNPs.

View Article and Find Full Text PDF

Amphetamine-type stimulants are a class of illicit drug that constitutes a worldwide problem to which intelligence agencies, first responders and law enforcement are tasked with identifying them in unknown samples. We report on the development of a graphene oxide (GO)-cationic multi-shaped gold nanoparticle (AuNP)-hemin hybrid nanozyme as a new biomimetic catalytic-induced aptamer-based colorimetric biosensor platform for amphetamine (AMP) and methamphetamine (MAMP). GO was electrostatically bonded to cationic multi-shaped cetyltrimethylammonium bromide (CTAB)-AuNPs to form a GO-CTAB-AuNP hybrid nanozyme exhibiting enhanced catalytic activity in the presence of hemin.

View Article and Find Full Text PDF

Authors report on a new fluoro-graphene-plasmonic nanohybrid aptamer-based fluorescent nanoprobe for cocaine. To construct the nanoprobe, newly synthesized glutathione-capped ZnS/AgSe quantum dots (QDs) were first conjugated to graphene oxide (GO) to form a QD-GO nanocomposite. The binding interaction resulted in a fluorescence turn-ON.

View Article and Find Full Text PDF

An exciting challenge is to create unduloid-reinforcing fibers with tailored dimensions to produce synthetic composites with improved toughness and increased ductility. Continuous carbon fibers, the state-of-the-art reinforcement for structural composites, were modified via controlled laser irradiation to result in expanded outwardly tapered regions, as well as fibers with Q-tip (cotton-bud) end shapes. A pulsed laser treatment was used to introduce damage at the single carbon fiber level, creating expanded regions at predetermined points along the lengths of continuous carbon fibers, while maintaining much of their stiffness.

View Article and Find Full Text PDF

Radially and azimuthally polarized picosecond (~10 ps) pulsed laser irradiation at 532 nm wavelength led to the permanent reshaping of spherical silver nanoparticles (~30 - 40 nm in diameter) embedded in a thin layer of soda-lime glass. The observed peculiar shape modifications consist of a number of different orientations of nano-ellipsoids in the cross-section of each written line by laser. A Second Harmonic Generation cross-sectional scan method from silver nanoparticles in transmission geometry was adopted for characterization of the samples after laser modification.

View Article and Find Full Text PDF

A Potassium Titanyl Phosphate (KTP) crystal has been used in conjunction with a 10-ps pulsed laser to produce a frequency-doubled conically-refracted Gaussian beam. The 'free' and 'forced' beams that make up the scheme for nonlinear conical refraction were readily observable in non-phase-matched conditions. The dependency of the frequency-doubled beam patterns on the incident beam polarization, which until now has remained unexplored, was examined in detail.

View Article and Find Full Text PDF

Azimuthal and radial polarization states of light are used to produce conical diffraction (CD) from a KGd(WO4)2 crystal. The patterns produced in the ring plane in each case display marked differences than those seen when linearly polarized incident light is used, with the production of a splitting of the CD ring into two concentric rings of equal intensity. The free space evolution for each type of polarization state is also experimentally recorded and investigated.

View Article and Find Full Text PDF

Silver ions were driven into glass by a direct current electric field-assisted ion exchange technique. The silver ion exchanged glass was then irradiated by laser pulses of 10 ns and 10 ps in length at 355 nm for comparison purposes. In both cases, laser irradiation led to the formation of a metallic-like film at the surface of the ion exchange glass.

View Article and Find Full Text PDF

We present results of our observations on the free space evolution of conically diffracted beams from both single and cascade systems using various combinations of four biaxial crystals of the monoclinic double tungstate family [KGd(WO4)2]. Longitudinal shifts and radii of the Hamilton-Lloyd pair of rings were measured. In each case, the symmetric - forward and backward - evolution of the beam in free space from its focal image plane was monitored and quantified.

View Article and Find Full Text PDF

Picosecond (~10 ps) pulsed laser irradiation at 532 nm led to the efficient and scalable fabrication of dichroic areas in glass with spherical silver nanoparticles of ~30 - 40 nm in diameter embedded in a surface layer of thickness ~20 μm. The observed dichroism is due to the uniform and permanent shape transformation of the nanoparticles - from spherical to spheroidal shapes - throughout the irradiated areas and along the laser polarization direction, paving the way for affordable manufacture of polarization-selective diffractive optical elements. The shape modification threshold and the dichroism as a result of Surface Plasmon Resonance band separation were identified.

View Article and Find Full Text PDF

A cascade conical diffraction system consisting of three optically biaxial KGd(WO4)2 crystals is considered. The effect of left- and right-handed circularly polarized incident light on the ring patterns produced away from the focal image plane of the system, the plane in which the incident beam waist would be focused if the crystals were isotropic, is investigated. Images and intensity distributions for scaled distances (ζ values) of 2.

View Article and Find Full Text PDF

We present results of our observations on the formation of a silver nanoparticle-containing layer in glass over time. First, silver ions are driven into the glass by field-assisted ion exchange at 300 °C. A following annealing step at 550 °C resulted in the formation of silver nanoparticles (< 4 nm in diameter).

View Article and Find Full Text PDF

A diffractive optical element is fabricated with relative ease in a glass containing spherical silver nanoparticles 30 to 40 nm in diameter and embedded in a surface layer of thickness ~10 μm. The nanocomposite was sandwiched between a mesh metallic electrode with a lattice constant 2 μm, facing the nanoparticle containing layer and acting as an anode, and a flat metal electrode as cathode. Applying moderate direct current electric potentials of 0.

View Article and Find Full Text PDF

In 1832 Hamilton predicted conical refraction, concluding that if a beam propagates along an optic axis of a biaxial crystal, a hollow cone of light will emerge. Nearly two centuries on, cascade conical refraction involving multiple crystals has not been investigated. We empirically investigate a unique two-crystal configuration, and use this to demonstrate an ultra-efficient conical refraction Nd:KGd(WO(4))(2) laser providing multi-watt output with excellent beam quality independent of resonator design with a slope efficiency close to the theoretical maximum, offering a new route for power and brightness-scaling in solid-state bulk lasers.

View Article and Find Full Text PDF

We investigate the possibility of preparation of laser-induced dichroism in composite glasses with a high concentration of silver nanoparticles. A detailed analysis based on the Maxwell-Garnett theory and experimental results shows that particles at different volume fractions react differently to the same laser irradiation parameters. Based on these findings, we demonstrate that a well-defined sequence of multiple irradiation and intermediate annealing can maximize the particles' aspect ratio and avoid unwanted partial destruction.

View Article and Find Full Text PDF

It has been demonstrated recently that silver nanoparticles embedded in a glass matrix can be dissolved by the combination of an intense dc electric field and moderately elevated temperature. In an intermediate state of this process percolated silver layers inside the glass can also occur. These structural modifications significantly modify the optical behavior of the glass, suggesting an interesting perspective for the engineering of optical properties of this kind of metallodielectric materials.

View Article and Find Full Text PDF

A combination of direct current (d.c.) electric field and moderately elevated temperature is applied to a glass with embedded spherical silver nanoparticles in the near surface region.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: