Ocular diseases pose significant challenges in timely diagnosis and effective treatment. Deep learning has emerged as a promising technique in medical image analysis, offering potential solutions for accurately detecting and classifying ocular diseases. In this research, we propose Ocular Net, a novel deep learning model for detecting and classifying ocular diseases, including Cataracts, Diabetic, Uveitis, and Glaucoma, using a large dataset of ocular images.
View Article and Find Full Text PDFThe intelligent transportation system (ITS) relies heavily on the vehicular ad hoc network (VANET) and the internet of vehicles (IoVs), which combine cloud and fog to improve task processing capabilities. As a cloud extension, the fog processes' infrastructure is close to VANET, fostering an environment favorable to smart cars with IT equipment and effective task management oversight. Vehicle processing power, bandwidth, time, and high-speed mobility are all limited in VANET.
View Article and Find Full Text PDFMobile cloud computing (MCC) provides resources to users to handle smart mobile applications. In MCC, task scheduling is the solution for mobile users' context-aware computation resource-rich applications. Most existing approaches have achieved a moderate service reliability rate due to a lack of instance-centric resource estimations and task offloading, a statistical NP-hard problem.
View Article and Find Full Text PDFA vehicular ad hoc network (VANET) is a sophisticated wireless communication infrastructure incorporating centralized and decentralized control mechanisms, orchestrating seamless data exchange among vehicles. This intricate communication system relies on the advanced capabilities of 5G connectivity, employing specialized topological arrangements to enhance data packet transmission. These vehicles communicate amongst themselves and establish connections with roadside units (RSUs).
View Article and Find Full Text PDF