Publications by authors named "Amiel Boullemant"

The response of the meta-metabolome is rarely used to characterize the effects of contaminants on a whole community. Here, the meta-metabolomic fingerprints of biofilms were examined after 1, 3 and 7 days of exposure to five concentrations of cobalt (from background concentration to 1 × 10 M) in aquatic microcosms. The untargeted metabolomic data were processed using the DRomics tool to build dose-response models and to calculate benchmark-doses.

View Article and Find Full Text PDF

Gastropod shells are calcified structures made of several crystal layers. They grow throughout the lifecycle of mollusks by integrating some of the chemical elements present in their environment, including metals. This characteristic means mollusks can be useful bioindicators of metal exposure.

View Article and Find Full Text PDF

Recent industrial developments have resulted in an increase in the use of so-called technology-critical elements (TCEs), for which the potential impacts on aquatic biota remain to be evaluated. In the present study, quantitative ion character-activity relationships (QICARs) have been developed to relate intrinsic metal properties to their toxicity toward freshwater aquatic organisms. In total, 23 metal properties were tested as predictors of acute median effect concentration (EC50) values for 12 data-rich metals, for algae, daphnids, and fish (with and without species distinction).

View Article and Find Full Text PDF

Several years after decommissioning, a magnesium dross and mixed waste heap at a former industrial facility is still reactive, as evidenced by the emission of heat, Volatile Organic Carbon (VOCs), acetylene (CH), cyanide (HCN) and ammonia (NH) from deep, discordant, epigenetic fissures. To evaluate the longer-term stability of the waste heap material, four cores were collected to evaluate vertical variations in temperature, moisture, gas composition, geochemistry, and mineralogy. Temperature increased with depth and peaked at around 8 m, reaching in excess of 90 °C.

View Article and Find Full Text PDF

Bauxite residue is a high volume by-product generated during the extraction of alumina from bauxite ore (Bayer process). The long-term containment of residue is associated with environmental risks due to potential dusting and surface run-off. While rehabilitation of residue is viewed as a suitable approach for minimizing this risk, there is need for completion criteria.

View Article and Find Full Text PDF

Bauxite residue is typically alkaline, has high sodium content and elevated concentrations of trace elements. Effective rehabilitation strategies are needed to mitigate potential environmental risks from its disposal and storage. Increasingly, the importance of viable soil faunal populations as well as establishment of vegetation covers is recognized as key components of successful rehabilitation.

View Article and Find Full Text PDF

Around 3 billion tonnes of bauxite residue (BR), the by-product of alumina extraction, have been produced and stockpiled worldwide, representing a potential risk for the environment due to the high alkalinity and the presence of relatively high concentrations of trace elements. Phytoremediation (or simply revegetation) is regarded as the most promising in situ remediation option to mitigate the environmental risk that might arise from the land-disposal of BR. Rehabilitation strategies (including the incorporation of amendments such as gypsum and organic matter) have been employed to address the main limitations to plant establishment and growth on BR, typically the high alkalinity, salinity and sodicity.

View Article and Find Full Text PDF

Bauxite residue, the by-product of the alumina industry, is mainly stored in land-based bauxite residue disposal areas (BRDAs). Environmental concern has been raised due to the large volumes in stockpile, the high alkalinity of the material, as well as the presence of elevated concentrations of trace elements. If not adequately managed, BRDAs can act as a source of pollution.

View Article and Find Full Text PDF

Background: We examined the uptake and sorption of aluminium (Al) and fluoride (F) by green algae under conditions similar to those found in the effluents of the aluminium industry. We took into account the speciation of Al in the medium since Al can form stable complexes with F and these complexes may play a role in the uptake and sorption of Al. We compared the capacity of four species of green algae (i.

View Article and Find Full Text PDF

Uptake of lipophilic metal complexes by freshwater algae has recently been shown to be pH dependent. Here we look at different physiological aspects that could influence the diffusion of the lipophilic Cd complex, Cd(diethyldithiocarbamate)2 (0) (Cd(DDC)2 (0) ), into algal cells at different exposure pH values. Changes in cell membrane permeability were assessed as a function of pH for three species of green algae [Chlamydomonas reinhardtii P.

View Article and Find Full Text PDF

Cadmium forms neutral, lipophilic CdL2 (0) complexes with diethyldithiocarbamate (L = DDC) and with ethylxanthate (L = XANT). In a synthetic solution and in the absence of natural dissolved organic matter (DOM), for a given total Cd concentration, uptake of these complexes by unicellular algae is much faster than the uptake of the free Cd(2+) cation. The objective of the present study was to determine how this enhanced uptake of the lipophilic CdL2 (0) complexes was affected by the presence of natural DOM (Suwannee River humic acid, SRHA).

View Article and Find Full Text PDF

From 2004 to 2009, aiming to better understand implications for its smelters, Rio Tinto Alcan conducted a detailed study of PM2.5 and PM10 (particulate matter [PM] < or = 2.5 and 10 microm in aerodynamic diameter, respectively) in its facilities.

View Article and Find Full Text PDF

Cadmium forms neutral, lipophilic Cd(L)2(0) complexes with diethyldithiocarbamate (DDC) and with ethylxanthate (XANT). Uptake of these complexes bythree unicellularfreshwater green algae (Chlamydomonas reinhardtii, Chlorella fusca, and Pseudokirchneriella subcapitata) was determined at two pH values (7.0 and 5.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session56jorhusi6vhugi26shq140s6tppiu5l): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once