Publications by authors named "Ami D Gutierrez-Jensen"

The ability of bacteria to sense and respond to mechanical forces has important implications for pathogens during infection, as they experience wide fluid shear fluctuations in the host. However, little is known about how mechanical forces encountered in the infected host drive microbial pathogenesis. Herein, we combined mathematical modeling with hydrodynamic bacterial culture to profile transcriptomic and pathogenesis-related phenotypes of multidrug resistant .

View Article and Find Full Text PDF

Unlabelled: Oncolytic viruses exploited for cancer therapy have been developed to selectively infect, replicate, and kill cancer cells to inhibit tumor growth. However, in some cancer cells, oncolytic viruses are often limited in completing their full replication cycle, forming progeny virions, and/or spreading in the tumor bed because of the heterogeneous cell types within the tumor bed. Here, we report that the nuclear export pathway regulates oncolytic myxoma virus (MYXV) infection and cytoplasmic viral replication in a subclass of human cancer cell types where viral replication is restricted.

View Article and Find Full Text PDF

Nucleocytoplasmic transport of proteins using XPO1 (exportin 1) plays a vital role in cell proliferation and survival. Many viruses also exploit this pathway to promote infection and replication. Thus, inhibiting the XPO1-mediated nuclear export pathway with selective inhibitors has a diverse effect on virus replication by regulating antiviral, proviral, and anti-inflammatory pathways.

View Article and Find Full Text PDF

RNA helicase A/DHX9 is required for diverse RNA-related essential cellular functions and antiviral responses and is hijacked by RNA viruses to support their replication. Here, we show that during the late replication stage in human cancer cells of myxoma virus (MYXV), a member of the double-stranded DNA (dsDNA) poxvirus family that is being developed as an oncolytic virus, DHX9, forms unique granular cytoplasmic structures, which we named "DHX9 antiviral granules." These DHX9 antiviral granules are not formed if MYXV DNA replication and/or late protein synthesis is blocked.

View Article and Find Full Text PDF